
Design Documentation
BSI Studio 1.2

BSI Product Development

Version Date 2024-02-17

Covered Topics
1. Introduction. 2

1.1. Getting started . 2

1.2. Technical Introduction . 2

1.3. Branding & Visual Design . 3

1.4. Constraints . 4

1.5. File format . 4

1.6. Content Editor . 5

1.7. Structure Reference . 6

1.8. Dropzones. 7

1.9. Groups . 8

2. design.properties . 10

2.1. The Basics . 10

2.2. Groups . 11

2.3. Content Elements . 11

2.4. Styles . 13

2.5. Configuration capabilities of the Rich Text Editor . 14

2.5.1. Feature list . 15

2.5.2. Value Lists . 17

3. Content Editor . 21

3.1. Content editor specific CSS. 21

3.2. Predefined Story outlets (Bracket Links) . 22

3.2.1. Using anchor links inside a design . 24

3.3. Content Elements and Parts . 24

3.3.1. Grouping . 25

3.3.2. Parts . 26

4. CX Design Creator. 42

5. Help . 46

5.1. Good practices . 46

5.1.1. Deleting or deprecating content elements . 46

5.1.2. Refactoring content elements . 46

5.1.3. Creating accessible designs . 46

5.2. Troubleshooting . 48

5.2.1. Design Upload . 48

5.2.2. Design Update . 52

5.2.3. Dropzone Issues . 55

5.2.4. Design Creator Issues. 56

5.2.5. Content Editor Limitations . 56

Wrong CX-version? Click here to get the documentations of all CX-versions.

1

https://bsi-software.github.io/bsi-cx-docs/

1. Introduction
Create experiences that delight customers. For marketing, sales, and service: Find, win, retain, and
understand customers with BSI CX. Design, execute and optimize perfect customer journeys.
Everything is cross-departmental, individualized for every customer, in real time, across all
touchpoints, and fully automated – for extraordinary and emotional experiences.

Learn more about all features of BSI CX by visiting our product website.

TIP
You wan’t to build a BSI CX Design? Learn how to use BSI designs by taking part in
the e-learning for designs!

NOTE
CX, Customer Experience and Studio. The BSI Customer Suite consists of multiple
Products, BSI CX is one of it. Formerly called BSI Studio, CX is an abbreviation of BSI
Customer Experience.

1.1. Getting started
Learn how to use BSI designs by taking part in the e-learning for designs.

The interactive e-learning helps you to reach your goal faster. We have developed this e-learning
from years of experience with various customers, with the aim of learning how to work with
designs quickly and delivering good results to the customer in a timely manner. In particular, you
will learn how to work with our templates so that you don’t have to start from scratch.

We recommend to start by adopting an existing design for BSI CX. This will help you to get started
and will already come with existing content elements which act as examples for your
customizations. BSI provides a set of design templates that are called Master Templates. The
Master Templates for email and web (including landingpage and website) are publicly available on
GitHub as an MIT licensed open source project.

Besides, the design build which is used to build the templates, as well as the library for email
content elements and web content elements on which the templates are based, are MIT licensed
open source projects.

Alternatively, you can start off from scratch by using the Scaffold Design and following the
guidance in this documentation to build a completely new template.

1.2. Technical Introduction
This documentation acts as the primary resource for developers that wish to implement a design
for BSI CX. Designs are a vital part of BSI CX. While focusing on BSI CX Designs, a basic knowledge
of the following layers is necessary:

2

https://www.bsi-software.com/en/cx
https://academy.bsi-software.com/gb/en-GB/Details/92/
https://academy.bsi-software.com/gb/en-GB/Details/92/
https://github.com/bsi-software/bsi-cx-design-master-template-email
https://github.com/bsi-software/bsi-cx-design-master-template-web
https://github.com/bsi-software/bsi-cx-design-build
https://github.com/bsi-software/bsi-cx-design-standard-library-email
https://github.com/bsi-software/bsi-cx-design-standard-library-email
https://github.com/bsi-software/bsi-cx-design-standard-library-web
https://github.com/bsi-software/bsi-cx-scaffold-design

Story

The Story controls the flow of a participant. It offers various steps which can be placed on the
storyboard via drag and drop. Your next customer journey delivering a landing page, event
invitation, website or newsletter will be born here.

Content

Websites, landing pages and newsletters require rich content. The content editor of BSI CX is
here to configure such contents. By user using Content Elements – reusable building blocks that
can be placed in your content via drag and drop – you can build attractive newsletters,
innovative landing pages and feature rich websites.

Design

The foundation of every Content is its design. The design defines the available „Content
Elements“, the visual representation of the content and the behavior of the content and content
elements. The Design must be created externally and uploaded into BSI CX. This documentation
covers how to build such designs.

1.3. Branding & Visual Design
Each brand has its own and unique visual design language. The branding guidelines of your
company or customer define the boundary conditions for building a design. As a design developer
for BSI CX, it is your responsibility to get a specification on how the website, landing page or
newsletter should look like and what elements it should consist of. Especially when it comes to
designing HTML emails, you may have to find a compromise between the developers' ideas of
visual design and the actual technical possibilities of HTML emails.

3

1.4. Constraints

IMPORTANT Our build and the CX-Editor has to be taken "as-is".

If the Design Validation fails or the Editor doesn’t show the Elements properly, it’s the responsibility
of the developer (probably you) to adjust the template accordingly.

There are some web technologies we do NOT support. Two common examples are:

• Webcomponents might work in the resulting landingpages, but are not supported within the
CX editor.

• Other Frameworks like Angular or React are familiar to most web developers, but not
supported by CX.

We strongly recommend you to use our npm build or the CX-Design-Creator. Feel free to contact the
design team, if you miss a feature or have an improvement idea.

1.5. File format
A BSI CX design is stored in a ZIP archive. A valid design for BSI CX must contain the following
mandatory files:

design.html

Defines the design, particularly the dropzones the user can use in the BSI CX content editor to
place content elements. The exact design.html syntax is described below. This file must be in the
root of the ZIP file.

content-elements.html

Defines the individual content elements that can be selected in BSI CX. A content element is a
HTML snippet that is inserted into the content using drag & drop. The exact content-
elements.html syntax is described below.

design.properties

Contains metadata on the design, such as names and descriptions of the content elements and
groups.

Beside these three mandatory files you are free to organize your ZIP file as you want. It is essential
though to make sure that the above-mentioned files are placed in the root of the ZIP file. Additional
optional files and folders may be supplied in the ZIP file as well. Note that one ZIP file can only
contain a single design.

NOTE The files and folders in the ZIP file must not contain any umlauts.

The following folder structure showcases the content of a simple design:

4

design.zip
│ content-elements.html ①
│ design.html ②
│ design.properties ③
│
├───css
│ styles.min.css
│
├───img
│ logo.png
│
└───js
 3rd-party.min.js
 scripts.min.js

① The content-elements.html file holds all content elements.

② The design.html defines the base layout of the page/email.

③ The design.properties file contains meta information about the design and its elements.

1.6. Content Editor
The content editor is where specific websites, newsletters and landing pages are created. The
content creator relies on a design of good quality to build contents which on the other hand are
referred from a story.

Figure 1. example of the BSI CX content editor

5

1. Design preview in content editor

2. List of available content elements

3. Use of a customizable content element

1.7. Structure Reference
The file design.html contains the frame of the design and must include at least one outermost
dropzone. It must contain valid, XHTML conform HTML with Doctype, <html>, <head> and <body>
tags.

The file content-elements.html contains all content elements of the design, that can later be drag
and dropped into the outermost dropzone of the design.html. Here no Doctype, <html>, <head> or
<body> tags are required.

6

Figure 2. structure reference

1.8. Dropzones
While dragging a content element into the content area, you will notice blue lines and blue areas.
These areas are called dropzones and identify areas where certain content elements can be placed.
Each dropzone has a list of allowed content elements that are specified in the design. A dropzone is
defined by adding the attribute data-bsi-dropzone to an HTML container element (e.g. <div> or
<table>). The list of allowed content elements is specified by the data-bsi-dropzone-allowed-elements
attribute. An optional limit of elements that can be placed inside the dropzone is defined by adding
the data-bsi-dropzone-max-number-of-elements attribute.

7

Listing 1. A dropzone that allows to place a maximum of one pre header element inside a newsletter design

<div data-bsi-dropzone="preheader-zone" data-bsi-dropzone-allowed-elements="nl-
preheader" data-bsi-dropzone-max-number-of-elements="1">
 <!-- Add element -->
</div>

WARNING
Problems can occour when placing a dropzone into a link or button element.
In this case, we recommend using a style.

1.9. Groups

8

All content elements can be structured in
groups. In the example screenshot on the left
side, three groups are defined: Header, Headings
and Text & Images. To structure the content
elements in such groups, the attribute data-bsi-
group is used. Each content element is checked to
determine if one of its parent elements has this
attribute. A group may be defined only once.
Below you see an HTML example of the three
groups Header, Headings and Text & Images:

Listing 2. example of attribute data-bsi-group : HTML

<div data-bsi-group="header">

<div data-bsi-element="main-navigation" data-bsi-element-part="html" />
</div>
<div data-bsi-group="headings">
<div data-bsi-element="heading1" data-bsi-element-part="plain-text" />
<div data-bsi-element="heading2" data-bsi-element-part="plain-text" />
</div>
<div data-bsi-group="textAndImages">
<div data-bsi-element="text" data-bsi-element-part="formatted-text" />

</div>

9

2. design.properties

2.1. The Basics
Metadata for a design is defined in the design.properties file. It contains general information on the
design, such as the name and author, as well as element specific information, such as with which
description and icon the elements are to be displayed to the right of the editor.

Listing 3. specifying design meta data

#metadata example
design.name=My Customer Design
design.author=John Doe, Doe Design Agency

Group information, content element specific entries, configuration capabilities for styles (allowing
you to mixin different CSS styles or adding certain features using JavaScript) as well as instructions
on how to customize the rich text editor experience can be found in the subsequent chapters.

Listing 4. example of a fully featured design.properties file

#metadata
design.name=My Customer Design
design.author=John Doe, Doe Design Agency

#groups
group.buttonsAndLinks.label=Buttons & Links
group.textAndImages.label=Text & Images

#styles
style.background-color.label=Background color
style.background-color.class.bg-color-green.label=Green
style.background-color.class.bg-color-red.label=Red

#rich text editor configurations
html-editor-config.my-config.features=bold,italic,underline,strikeThrough,textColor
html-editor-config.my-config.text-colors=#ff00cc,#aabbcc

#content elements
element.text.label=Text
element.text.icon=text
element.text.parts.formatted-text.label=Formatted text
element.text.parts.formatted-texthtml-editor-config=my-config

element.button.label=Button
element.button.description=A red or green button
element.button.styles=background-color

10

2.2. Groups
Each content element is assigned to a group. To specify a display name for each group element that
exists in the content-elements.html file, add an entry based on the data-bsi-group identifier to the
design.properties file.

Listing 5. giving groups clearly identifiable descriptions

#Specification
group.<group-identifier>.label=<Name of the group>

#Example
group.textAndImages.label=Text & Images

2.3. Content Elements
For each content element that is defined in the content-elements.html file, the following entries
should be defined in order to get a clean user experience. The element identifier is the value of the
data-bsi-element attribute:

Listing 6. important metadata for content elements

#Specification
element.<element-identifier>.label=<Name of the content element>
element.<element-identifier>.description=< Description of the content element>
element.<element-identifier>.icon=<icon identifier>

#Example
element.logo.label=Cooperate Logo
element.logo.description=Visualize your corporate logo
element.logo.icon=image

Refer to the following illustration to pick a value for icon.

11

Figure 3. icon identifier reference

For element parts, labels can be defined. Those are then used as section headings while editing a
content element in the content editor. <part-identifier> is the data-bsi-element-part value of the
element part.

Listing 7. important metadata for content element parts

#Specification
element.<element-identifier>.parts.<part-identifier>.label=<part label>

Usage:
element.logo.parts.image.label=Image for Logo

If one content element has multiple element parts of the same type, an index based notation must
be used, following the natural order in the DOM. The index starts at 0 and is only necessary if there
are multiple parts of the same type.

Listing 8. defining metadata for multiple element parts of the same element part type for a certain content
element

element.logo.parts.image[0].label=Desktop image for Logo
element.logo.parts.image[1].label=Mobile image for Logo

12

2.4. Styles

WARNING
We strongly discourage from using styles in email templates. Many email
clients still require certain styles to be set through inline styles which does not
work well with styles on element level as it is done by the styles feature.

By defining styles for a certain content element, its characteristics can be controlled. By using styles
to make a content element configurable, it is not necessary to implement an additional content
element for an almost identical content element. A requirement to implement a button in two
different colors (red and green) would therefore be implemented by creating a button content
element with two styles: red and green. Styles are only defined once, and each element can have 0
to n style capabilities. Each style capability will then be transformed to a dropdown in the editing
dialog of a content element, where the specific style can be applied to a content element.

Figure 4. example of a style dropdown

Listing 9. defining style capabilities

#Specification
style.<style-capability-identifier>.label=<Style capability dropdown label>
style.<style-capability-identifier>.class.<CSS-class-identifier>.label=<Label to
describe the dropdown option>

#Example
style.background-color.label=Background color
style.background-color.class.bg-color-green.label=Green
style.background-color.class.bg-color-red.label=Red

1 to n styles can be defined in a comma separated format. Each will then appear as an individual
dropdown in the editor, where one style can be selected from the list of styles.

13

Listing 10. assigning style capabilities to content elements

#Specification
element.<element-identifier>.styles=<style-capability-identifier>, <style-capability-
identifier>

Usage:
element.button.styles=background-color,border-color,text-color

To ensure that a style is effective, a CSS class must be defined for it. If a style is preselected on an
element, it is sufficient to add the desired CSS class to the respective element in the HTML.

Listing 11. CSS class for a style

.colored-button.bg-color-green { background-color: green; }

.colored-button.bg-color-red { background-color: red; }

Listing 12. how styles are applied on content elements

<button data-bsi-element="button" class="colored-button bg-color-green"></button>

2.5. Configuration capabilities of the Rich Text Editor

IMPORTANT CX 1.2.13

By defining a content element part of type formatted-text, a fully featured rich text editor will be
available to the users of the content editor. The built-in WYSIWYG rich text editor is powered by
Froala. BSI allows to customize a subset of Froala features directly out of a design. In order to do so,
a configuration section in the design.properties can be used to customize the features of the rich
text editor. Each element part of type formatted-text can have it’s own custom list of features,
although in most cases one feature definition is shared among different content elements.

A typical, simple rich text editor configuration will look like this:

Listing 13. Rich text editor configuration example

html-editor-config.my-config.features=bold,italic,underline,strikeThrough,textColor
html-editor-config.my-config.text-colors=#ff00cc,#aabbcc

The above configuration (named my-config) needs to be assigned to a concrete element part in
order to apply the customizations:

Listing 14. Applying an HTML editor configuration on a content element 'text'

element.text.parts.formatted-text.html-editor-config=my-config

14

https://froala.com/

The entire list of supported configuration options is documented in the subsequent chapters.

2.5.1. Feature list

The most important configuration option is the list of features that will be shown in the WYSIWYG
editor.

The format is as follows:

Listing 15. Feature list format

html-editor-config.<config identifier>.features=<comma separated feature list>

If one wants to support bold, italic, and underlined text, the definition for doing so would be like
this:

Listing 16. Feature list example

html-editor-config.my-config.features=bold,italic,underline

The keys in the list below (indicated in bold) must be provided as a comma separated list as in the
example above. Each key identifies a certain feature which is then displayed as a separate button in
the editor. The sequence is irrelevant and does not affect the display order, as the display order is
given by the server-side implementation.

The following features are available:

bold

the text can be formatted in bold.

italic

the text can be formatted in italics.

underline

the text can be underlined.

15

strikeThrough

the text can be displayed with a line through the center.

subscript

the text can be displayed as a subscript.

superscript

the text can be displayed as a superscript.

fontSize

the font size can be changed based on the font-sizes value list.

lineHeight

the line height can be changed based on the line-heights value list.

textColor

the text color can be changed based on the text-colors value list.

backgroundColor

the background color can be changed based on the background-colors value list.

alignLeft

the text can be left aligned.

alignCenter

the text can be centered.

alignRight

the text can be right aligned.

alignJustify

the text can be justified (As most browsers are terrible in handling justified text properly, we
recommend to not enable this feature).

formatOL

the text can be displayed as an organized list.

formatUL

the text can be displayed as an unorganized list.

outdent

the text can be outdented (useful for sub-lists).

indent

the text can be indented (useful for sub-lists).

paragraphFormat

changes the format of the paragraph based on the formats value list.

16

quote

display the text as a quote.

specialCharacters

inserts special characters.

emoticons

inserts emoji.

insertLink

permits the immediate insertion of links without having to use a wildcard.

html

displays and edit the HTML of the text.

help

displays Help.

In addition, the following features are always displayed in the editor and must therefore not be
listed separately:

clearFormatting

clears all formatting from the selected text.

undo

undoes the change.

redo

redoes the change.

fullscreen

displays the editor in full screen mode.

selectAll

selects the entire text in the editor.

Our experience has shown that these features are useful in the vast majority of cases and that the
editing experience would be significantly affected without them.

2.5.2. Value Lists

A list of values that will be shown in the editor can be defined for certain features (e.g. the list of
colors when the font color feature is active).

17

Listing 17. An example using configuration with different value lists set

html-editor-config.my-extended-
config.features=bold,italic,underline,strikeThrough,textColor,backgroundColor,fontSize
,paragraphFormat,lineHeight
html-editor-config.my-extended-config.text-colors=#ff0000,#00ff00,#0000ff
html-editor-config.my-extended-config.background-colors=#ff0000,#00ff00,#0000ff
html-editor-config.my-extended-config.formats=h1,h2,h3,h4,pre
html-editor-config.my-extended-config.font-sizes=8,9,10,11,12,14,16,18,24,30,36,48,72
html-editor-config.my-extended-config.font-size-unit=px
html-editor-config.my-extended-config.font-size-default=12
html-editor-config.my-extended-config.line-heights=1,1.15,1.5,2
html-editor-config.my-extended-config.enter=p

2.5.2.1. Colors

A comma separated list of RGB colors in hexadecimal format. To customize the color picker for
textColor and backgroundColor, provide a list of colors through the text-colors and background-
colors value list.

Listing 18. text-colors example

html-editor-config.my-config.text-colors=#ff00cc,#aabbcc

Listing 19. background-colors example

html-editor-config.my-config.background-colors=#dddddd,#abcdef

2.5.2.2. Paragraph formats

IMPORTANT CX 1.2.46

Paragraph formatting and headings can be configured as well. This may be customized through the
formats value list, which will only have an effect if the feature paragraphFormat is active.

18

Listing 20. formats example

html-editor-config.my-config.formats=p,h1,h3

The following formats can be provided:

p

for an html paragraph (<p>)

h1

for an html H1 title (<h1>)

h2
<h2>

h3
<h3>

h4
<h4>

h5
<h5>

h6
<h6>

pre

for preformatted text (<pre>)

2.5.2.3. Line heights

To customize the lineHeight value list, provide a list of heights in percentages, comma separated.
The line height values define the factor by which factor the current line height is multiplied based
on the font size used.

Listing 21. line-height example

html-editor-config.my-config.line-heights=1,1.15,1.5,2

2.5.2.4. Font size

To customize the list of font sizes for fontSize, provide a list of sizes through the font-sizes value
list. A custom default value can be set by using font-size-default.

Size information is provided numerically. If several sizes are permitted, then each individual entry
is listed in a comma separated format. The data on font sizes (font size and font size default) are
absolute values.

The unit of measurement (font-size-unit) defines which unit to be used for information regarding

19

the font sizes. The following are permitted:

px

Pixels

em

Relative to font size of the parent

rem

Relative to font size of the root element

pt

Points

cm

Centimeters

mm

Millimeters

Listing 22. font-sizes, font-size-unit and font-size-default example

html-editor-config.my-config.font-sizes=8,9,10,11,12,14,16,18,24,30,36,48,72
html-editor-config.my-config.font-size-unit=px
html-editor-config.my-config.font-size-default=12

2.5.2.5. Entry mode

By defining the entry mode (enter), you define what happens in the editor when the Enter key on
your keyboard is pressed. The following options are available:

p

to enclose the text with a paragraph (<p>)

div

to enclose the text with a <div> tag

br

to simply insert a
 tag for a line break

In p and div modes, there is the option to force a simple line break with Shift+Enter. This will add

 without immediately ending the block and starting a new one.

Listing 23. enter mode example

html-editor-config.my-config.enter=div

20

3. Content Editor

3.1. Content editor specific CSS

IMPORTANT CX 1.2.46

Sometimes it is useful to apply special CSS rules to the content when the page is in edit or preview
mode. There are two special CSS classes set on the document’s <html> tag to address such use cases:

• bsi-ce-edit-mode is set when the document is shown in the content editor.

• bsi-ce-preview-mode is set when the document is shown in preview mode inside the content
editor.

The preview mode outside the content editor or any content that is delivered by a story will not
have any of the above listed classes.

Listing 24. editor specific CSS example: HTML

<html><head><!-- head omitted --></head>
<body>
 <h1 class="hide show-if-edit">this is edit mode</h1>
 <h1 class="hide show-if-preview">this is preview mode</h1>
 <!-- rest of body omitted -->
</body>

Listing 25. editor specific CSS example: CSS

.hide { display: none; }

.bsi-ce-edit-mode .show-if-edit { display: block; color:green; }

.bsi-ce-preview-mode .show-if-preview { display: block; color:darkorange; }

Table 1. editor specific CSS example: resulting representation in the content editor

21

Edit mode Preview Mode

3.2. Predefined Story outlets (Bracket Links)
One way to define a link out of a design is to use a data-bsi-element-part="link" annotation on a
link (<a>) element. Doing so will add a link editor to enter a URL and a link text to the content
editor.

Listing 26. Adding an editable link to a content element.

<a data-bsi-element-part="link" href="https://www.bsi-software.com/">BSI Website

22

Figure 5. visualization of an editable link

Another way to define a link directly out of a design is by using the CX bracket link syntax for links.
This mechanism in built into the content editor itself to create a link anywhere in a text.

Listing 27. Example on adding a link anywhere in the text.

If you do not wish to receive further
promotions, you can [unsubscribe] now.

① Definition of links using the CX bracket syntax.

② Each link is converted into a story outlet. Each outlet can then be linked to an individual action
in the story.

③ The content that is delivered to the user.

While rendering the above content, CX will convert the [unsubscribe] term to a link tag internally,
create a unique hyperlink and will add a new outlet to the step to which the current content
belongs. When using bracket links, the story designer will see the provided link as a story outlet by
default. This allows the Story Designer to link the click action on the link with other steps (e.g. a
subsequent landing page step). In the example above, the Email Step will already have an outlet
named unsubscribe. The bracket technique itself is usable everywhere in the content editor and is
not limited to the usage in a design.

The convenience format of a bracket link for CX is [link text|ID]. The full syntax is [ID|text=link
text|url=https://example.com|newWindow].

• url can be used to explicitly specify an absolute URL.

23

• newWindow will force to open the target in a new tab or window.

Both url and newWindow are optional.

If a bracket itself should be part of a link, it can be escaped with a backslash (e.g. [\[click me\]|id]
will then be visualized as [click me]).

You can also place a bracket link anywhere in the design. An example of doing so is to add it to an
href of a link.

Listing 28. Adding a bracket link to a link will allow us to track the "Facebook" link in CX.

WARNING
Be reminded that all CX will replace everything that looks like a bracket link. It
is your responsibility as a developer to use escaping where brackets have a
different meaning.

Listing 29. Escaping is important in cases like this one.

<!-- CX will convert this to a bracket link -->
<input pattern="[0-9]">

<!-- escaping is mandatory for the pattern mechanism to work as desired -->
<input pattern="\[0-9]">

3.2.1. Using anchor links inside a design

First of all, it is possible to use anchor links in the form of #top inside a CX design. Anchor links are
allowed as targets of link parts. However, it is not possible to use anchor links as url of a bracket
link. This is due to the fact, that bracket links meant to be trackable by CX and this requires a
complete roundtrip to the server.

Listing 30. How to use anchor links in a design.

<section id="news">
 <!-- some news -->
</section>

<!-- some more html code -->

<div data-bsi-element="cta">
 Jump to news
</div>

3.3. Content Elements and Parts
This chapter describes the structure of the content-elements.html file and the available content

24

elements. The content-elements.html file contains HTML snippets for the content elements that can
be selected in BSI CX. To do so, BSI CX searches for elements with the data-bsi-element attribute in
the HTML code. The recommendation is to define all content elements at the same level as the
DOM, for example, as <div> directly below the <body> element. However, for better visualization
during development, the developer can also create additional elements (e.g., with CSS borders or
margins) around the elements marked with data-bsi-element. BSI CX will ignore those, though.

TIP
It is not necessary for the content-elements.html file to have a <html>, <head> or <body>
tag. But the containing HTML must be valid.

The following listing illustrates a very simple content element:

<div data-bsi-element="logo">

</div>

As we can see in the listing, data-bsi-element defines the identifier of the content element. It must
not contain any spaces. The identifier corresponds to the value that can be used in the attribute
called data-bsi-dropzone-allowed-elements in the dropzone. The element marked with the identifier,
when used, is inserted into the relevant dropzone (not only the child elements).

WARNING
The content editor specifically highlights the content elements. To make sure
this works properly, all content elements must be block elements rather than
inline elements.

A content element can define one or more internal dropzones. The definition is the same as for
design.html. For example, use it with a content element for a 3-column layout with three internal
dropzones. While the dropzones may be nested arbitrarily, please pay attention to usability.

3.3.1. Grouping

Complex designs can consist of many elements. For better organization, it is mandatory to group
the elements. To do so, the data-bsi-group attribute can be used. The following listing illustrates
such a grouping:

25

<div data-bsi-group="texts">
 <div data-bsi-element="default-text" data-bsi-element-part="formatted-text">
 <p>Lorem ipsum</p>

 lorem
 ipsum

 </div>
 <div data-bsi-element="raw-text" data-bsi-element-part="plain-text">Lorem
ipsum</div>
</div>
<div data-bsi-group="images">
 <div data-bsi-element="full-size-image">

 </div>
</div>

3.3.2. Parts

A content element part references, inside a content element, an area (such as text or image) that
can be edited directly with the BSI CX content editor. The content element "text with image" knows,
for example, the two areas image and plain-text. The identifiers must be adopted exactly as they
are. The following listing illustrates the example:

<figure class="element text-with-image" data-bsi-element="text-with-image"> ①
 ②
 <figcaption class="text" data-bsi-element-part="plain-text">Lorem
ipsum</figcaption> ③
</figure>

① This is the content element definition.

② The image part defines an editable image.

③ The plain-text part defines an editable plain text.

TIP
The individual parts are likely to contain sample content already. This content must fit
in terms of the structure (e.g., only plain text with plain-text, and a correct table
definition with table, etc.)

3.3.2.1. Plain Text

The part plain-text can be applied to any HTML element that can contain text. The text is inserted
within the element. The element must not have children with other content element parts (content
is removed). A single-line text field without formatting is available as the editor. When using the
optional attribute data-bsi-multiline, the text field becomes multiline.

26

IMPORTANT
Boolean attributes like data-bsi-multiline require an empty value ="" or
sample value like ="true".

Listing 31. Sample usage of the plain text part.

<h1 data-bsi-element="title-h1" data-bsi-element-part="plain-text" class="element
title-h1">Lorem ipsum</h1>

Listing 32. Sample usage of the plain text part with the multiline feature.

<p data-bsi-element="paragraph" data-bsi-element-part="plain-text" data-bsi-
multiline="">Lorem ipsum
dolor sit amet</p>

3.3.2.2. Formatted Text

The part formatted-text can be applied to any HTML element that can contain text. The element
must not have children with other content element parts (content is removed). The rich text field
with a limited number of formatting options is available as an editor. For more information about
the available configuration options see chapter Configuration capabilities of the Rich Text Editor.

Listing 33. Sample usage of the formatted text part.

<section data-bsi-element="section" data-bsi-element-part="formatted-text">
 <h1>Lorem ipsum dolor sit amet</h1>
 <p>Proin porta pharetra est non molestie.</p>
 <p>More</p>
</section>

3.3.2.3. HTML

The html part can be applied to any HTML element. The code is inserted within the element. The
element must not have children with other content element parts (content is removed). A text field
is used as the editor. HTML can be written directly into this field.

Listing 34. Sample usage of the HTML part.

<div data-bsi-element="html" data-bsi-element-part="html">
 <iframe src="https://www.openstreetmap.org/export/embed.html" style="height:
500px;"></iframe>
</div>

This part can be useful for:

• Prototyping

• Quick-and-Dirty Hacks

• Embedding any HTML code

27

WARNING
It is not allowed to place any data-bsi-element or data-bsi-element-part
attributes inside the HTML code. This won’t work as expected and leads to
invalid content.

3.3.2.4. Video

The video part can be applied to any block level HTML element. This part can be used to display
information and thumbnails of external videos. It can also be used to embed external videos.
Within the element, various elements can be used as placeholders:

• Each <iframe> element is used to embed an external video player.

• Each element with a data-bsi-video-thumbnail attribute is used to display the video
thumbnail.

• Each HTML element with the data-bsi-video-title attribute is used to display the video title.

• Each HTML element with the data-bsi-video-description is used to display the video
description.

• Each <a> element with the data-bsi-video-link is used to place a link to the external video. The
text of the hyperlink will not be touched, only the href attribute will be filled.

IMPORTANT
Fetching the video’s title and description may requires an active API key for
the appropriate provider.

IMPORTANT
Boolean attributes like data-bsi-video-title require an empty value ="" or
sample value like ="true".

The following external video providers are supported:

YouTube

Without a configured API key, only the thumbnails are automatically picked. More information
on obtaining a YouTube API key: https://developers.google.com/youtube/v3/getting-started

Be aware that there are two kinds of URLs involved: One is the link to the video platform itself for
the href attribute on the <a> tag and there is the embedded URL for the <iframe> player. In the case
of YouTube https://www.youtube.com/watch?v=YpnFs4aBLQA is the link to the video platform. The
corresponding embedded URL would be https://www.youtube.com/embed/YpnFs4aBLQA. If you
want to provide sample content for your element you may have to fill both URLs in the right tag.
The following listing illustrates the use of sample content for a simple video element:

28

https://developers.google.com/youtube/v3/getting-started
https://www.youtube.com/watch?v=YpnFs4aBLQA
https://www.youtube.com/embed/YpnFs4aBLQA

Listing 35. Example of a simple video element.

<div class="element video" data-bsi-element="video-simple">
 <div class="responsive-video" data-bsi-element-part="video" data-bsi-video-data-
link="https://www.youtube.com/watch?v=YpnFs4aBLQA"> ①
 <iframe width="1120" height="630" frameborder="0"
src="https://www.youtube.com/embed/YpnFs4aBLQA" allow="autoplay; encrypted-media"
webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe> ②
 </div>
</div>

① The link to the video platform is placed inside the data-bsi-video-data-link attribute.

② The embed video URL is placed inside the src attribute of the <iframe> tag.

This results in the following content element:

Figure 6. Simple video element in action.

A more complex video element would be the following:

29

Listing 36. Example of a complex video element.

<div class="element video" data-bsi-element="video-thumbnail">
 <div class="video-thumbnail" data-bsi-element-part="video" data-bsi-video-data-
link="https://www.youtube.com/watch?v=YpnFs4aBLQA"> ①
 <p>
 <a href="https://www.youtube.com/watch?v=YpnFs4aBLQA" data-bsi-video-
link="" target="_blank"> ②
 <img src="https://i.ytimg.com/vi/YpnFs4aBLQA/maxresdefault.jpg" alt=""
data-bsi-video-thumbnail=""/> ③

 </p>
 <h3 data-bsi-video-title="">BSI Tech Lovers</h3> ④
 <p data-bsi-video-description="">Für mehr WOW-Momente mit BSI. Monika
Freiburghaus, Ralf Muri, Thomas Lindauer und Urs Frick zeigen Einblicke in ihre pers
önlichen WOW-Momente.</p> ⑤
 </div>
</div>

① The link to the video platform is placed inside the data-bsi-video-data-link attribute.

② The link to the video platform is also placed inside the href attribute.

③ The placeholder image can also be part of the design, it is not mandatory to provide the URL to
the real image here.

④ The content of the first tag marked with data-bsi-video-title will be used as placeholder for the
title.

⑤ The content of the first tag marked with data-bsi-video-description will be used as placeholder
for the video description.

This results in the following content element:

30

Figure 7. Complex video element in action.

The video part is quite powerful and can be used in various ways:

• Enrich your landing page or website with embedded videos.

• Use video thumbnails in your content.

• Send emails with link, thumbnail, title and description of an external video.

3.3.2.5. Image

The image element part can only be placed inside of a or <a> tag. The source is inserted in the
src attribute.

Listing 37. Example of an image element

<div data-bsi-element="image-simple">

</div>

It is not possible to omit the image of an image part. Therefore it is mandatory to specify an image in
the content editor. Otherwise a validation error will occur.

srcset

By specifying the srcset attribute, the images are also scaled accordingly. If a srcset attribute is
present, the src attribute is set to the image at its highest resolution (according to the defined
srcset). If there is no srcset attribute, the selected image is not scaled and is placed directly as src.
For images with dynamic sources (the image is set through the story), the definition of the srcset is

31

ignored. If you set an image in the content editor, make sure it is of decent size. After saving the
content, the image is scaled to the sizes specified in the srcset attribute and stored on the CX
resource server. Depending on the resolution of device that is requesting the landing page/website,
a different resolution of the image is loaded.

TIP We highly recommend to set the srcset attribute.

Listing 38. Example of a image element that scales to the sizes specified in srcset

<div data-bsi-element="image-simple">
 <img src="example-800w.jpg" srcset="example-480w.jpg 480w, example-800w.jpg 800w"
alt="Example image" data-bsi-element-part="image" />
</div>

Providing an image through the story

Dynamic image sources can be specified with angle brackets, e.g. <my-dynamic-image>. The image
URL will then be provided by the story. Please note that in this case the srcset attribute will be
ignored. Thus, dynamic image sources are not scaled.

3.3.2.6. background-image

An arbitrary element which permits the use of a CSS background-image. It places the CSS attribute
background-image. The image selection is available as the editor just like with the image part.

Listing 39. Example usage of the background-image part.

<div class="element scene" data-bsi-element="scene">
 <div data-bsi-element-part="background-image" style="background-image:
url('example.jpg')"></div>
</div>

3.3.2.7. table

A <div> oder <td> element with a table element as a direct child element. The table content is filled
according to the editor (including colgroup). Colspan is not supported. On even or odd rows or
columns, the CSS class even or odd is placed. The <th> tag is used for header columns, if specified.
This part does not support <thead> and <tbody> tags.

TIP It is possible to use an iterator to generate dynamic tables.

32

Listing 40. Example usage of the table part.

<div class="element table" data-bsi-element="simple-table" data-bsi-element-
part="table">
 <table>
 <tr>
 <th>Firstname</th>
 <th>Lastname</th>
 <th>Age</th>
 </tr>
 <tr>
 <td>John</td>
 <td>Doe</td>
 <td>42</td>
 </tr>
 </table>
</div>

3.3.2.8. iterator

An arbitrary element. The attribute data-bsi-iterator can be defined on this element. The attribute
data-bsi-iterator-item must be defined on the element or on one of the included elements. This
defines the element to be duplicated. If data-bsi-iterator is defined and the iterator does not
provide any data, the entire element is removed. Otherwise, only the element to be duplicated is
marked with data-bsi-iterator-item.

IMPORTANT
Boolean attributes like data-bsi-iterator-item require an empty value ="" or
sample value like ="true".

A text field is used as the editor. The name of the iterator can be placed in this text field.

Listing 41. Example usage of the iterator part.

<div class="element iterator" data-bsi-element="iterator" data-bsi-iterator="sample">
 <div class="customer" data-bsi-iterator-item="">
 <dl>
 <dt>Name</dt>
 <dd>{customer.name}</dd>
 <dt>Address</dt>
 <dd>{customer.address}</dd>
 </dl>
 </div>
</div>

3.3.2.9. news-snippets

An arbitrary element. Displays a news item. Within the element, elements with the data-bsi-
property attribute can be defined. This attribute may have the following values: image, title,
headline, or text. The content of these elements is then replaced accordingly with the value of the

33

selected news item. In that context, elements from property title, headline, and text are
mandatory.

If a link in CX is configured into a news snippet, title and image are automatically supplemented
with a link. When generating the news list, the following CSS classes are automatically set on a
news snippet to permit better styling of the individual elements:

news-nth-X

the position in the list. E.g., news-nth-9

odd

odd position in the list

even

even position in the list

first

first news snippet

last

last news snippet

Listing 42. Example usage of the news-snippets part.

<div class="element news" data-bsi-element="news-snippets" data-bsi-element-
part="news-snippets">
 <div class="news-image element">

 </div>
 <div class="news-text element">
 <h2 class="ns-title" data-bsi-property="title">Breaking News</h2>
 <p class="ns-headline" data-bsi-property="headline">Lorem ipsum dolor sit
amet</p>
 <p class="ns-text" data-bsi-property="text">Ea vis odio voluptua, pri ei facer
denique.</p>
 </div>
</div>

3.3.2.10. form

A <form> element. The element must contain a submit button and may also contain a reset button.
Those buttons must be <input> elements. In the form configuration, the reset button can be hidden
or displayed. In that case, the DOM attribute disabled is set on the input element.

The form element must contain an element with the data-bsi-form-validation attribute, and this
attribute must contain an element with the data-bsi-form-validation-item attribute.

Within the element with data-bsi-form-validation, the element with data-bsi-form-validation-item
is duplicated for each error in the server-side form validation, and the validation message is

34

inserted as the content of the validation item element.

IMPORTANT
Boolean attributes like data-bsi-form-validation require an empty value =""
or sample value like ="true".

In addition to the display in the above-described element, a data-bsi-form-validation-message
attribute is set for each defective form field. It contains the validation error for the respective field.
The attribute can be used to style the field with CSS if there is an error (CSS selector checks for the
presence of the attribute) or to display the error message with CSS and/or JavaScript in the
respective field.

The following form fields can be marked as mandatory fields in the content editor. If this is done,
the required attribute is set in the relevant HTML element. Thus, the mandatory elements are styled
using the respective CSS selectors.

To exclude a certain form from CX you set the data-bsi-form-ignore attribute on the form tag. Any
form with this marker will be left untouched by CX.

Listing 43. Example usage of the form part.

<div class="element form" data-bsi-element="slim-form">
 <form class="form form-wrapper" data-bsi-element-part="form" id="form">
 <ul class="form-validation" data-bsi-form-validation="">
 <li class="form-validation-item" data-bsi-form-validation-item="">

 <div class="form-content" data-bsi-dropzone="form-content" data-bsi-dropzone-
allowed-elements="form-field">
 </div>
 <div class="form-button-bar">
 <input type="submit" class="form-button send" value="Senden" />
 <input type="reset" class="form-button reset" value="Zurücksetzen" />
 </div>
 </form>
</div>

3.3.2.11. form-field

A <div> element. Contains a <label> and an <input> element. In the configuration, the label, initial
value, mandatory field, and input type can be defined. The following input types are supported:

text

For a simple text field.

email

Input field, that accepts a valid e-mail address.

tel

Input field, that accepts a phone number.

35

password

A password input field, that shows * instead of the real characters.

number

An input field, that accepts only numbers.

range

An input field, that shows a numeric range slider.

date

An input field, that can be used to select a certain date.

datetime-local

Input field, that accepts a date and a specific time.

time

Input field, that accepts a time.

file

Input field, that can be used to upload a file.

To fixate the form field type, the data-bsi-form-field-fixed-type attribute can be used on the
element. Doing so allows the setup of a customized date field, for example. The type of the form
field is then set and cannot be changed in the content editor.

WARNING
Be aware, that not all browsers support all types of input fields. Some
browsers require a polyfill to handle certain types of form fields. It is up to the
developer to use polyfills where this is required.

Listing 44. Example usage of the form-field part.

<div class="form-field" data-bsi-element="date-field" data-bsi-element-part="form-
field" data-bsi-form-field-fixed-type="">
 <label for="date" class="label">Date</label>
 <input id="date" class="input" type="date" value="2009-11-13" required="" />
</div>

IMPORTANT
Boolean attributes like data-bsi-form-field-fixed-type require an empty
value ="" or sample value like ="true".

3.3.2.12. form-checkbox

A <div> element. Contains a <label> and an <input> element with the checkbox type.

36

Listing 45. Example usage of the form-checkbox part.

<div data-bsi-element="form-checkbox" data-bsi-element-part="form-checkbox"
class="element checkbox">
 <input type="checkbox" id="checkbox1" />
 <label for="checkbox1">Checkbox 1</label>
</div>

3.3.2.13. form-textarea

A <div> element. Contains a <label> and a <textarea> element.

Listing 46. Example usage of the form-textarea part.

<div data-bsi-element="form-textarea" data-bsi-element-part="form-textarea"
class="form-field form-element">
 <label for="textarea" class="label">Description</label>
 <textarea id="textarea" rows="5" cols="20" class="textarea" maxlength="500">Lorem
ipsum</textarea>
</div>

3.3.2.14. form-select

A <div> element. Contains a <label> and a <select> element with the elements option. The pre-
allocation of the element can be controlled with the data-bsi-value and data-bsi-value-list
attributes. The data-bsi-value attribute contains the preal-location, and the values available for
selection are defined in the data-bsi-value-list attribute. A line break (\n or \r\n) separates each of
those.

To fixate the values that are available for selection, the data-bsi-form-select-fixed-value-list
attribute can be set on the element. Then, the list of values cannot be changed in the content editor.
Only the preselection can be changed.

WARNING The multiple attribute is not supported.

37

Listing 47. Example usage of the form-select part.

<div data-bsi-element="form-select" data-bsi-element-part="form-select" class="form-
select form-element" data-bsi-value-list="Yes
No
Unsure" data-bsi-value="No">
 <label for="select" class="label">Decision</label>
 <div class="select-wrapper">
 <select size="1" id="select">
 <option>Yes</option>
 <option selected="">No</option>
 <option>Unsure</option>
 </select>
 <div class="dropdown" role="presentation">a</div>
 </div>
</div>

3.3.2.15. form-radio

A <div> element. Contains a <label> and a <div> element as a radio group. The radio group is
marked with the data-bsi-radio-group attribute. The radio group contains radio items. These are
identified with the data-bsi-radio-item attribute and contain a <label> and an <input> element with
the radio type. The preselection of this element can be controlled with the data-bsi-value and data-
bsi-value-list attributes. Same as the form-select part. The same applies to the data-bsi-form-
select-fixed-value-list attribute.

Listing 48. Example usage of the form-radio part.

<div data-bsi-element="form-radio" data-bsi-element-part="form-radio" class="form-
radio form-element">
 <label class="label">To be or not to be?</label>
 <div data-bsi-radio-group=""> ①
 <div class="form-radio-item" data-bsi-radio-item=""> ②
 <input type="radio" id="radio1" />
 <label for="radio1">Radio-Button 1</label>
 </div>
 </div>
</div>

① The data-bsi-radio-group element contains the prototype element.

② The data-bsi-radio-item element is the prototype element.

WARNING
Be aware, that data-bsi-radio-item must be right inside data-bsi-radio-group.
Any intermediate element will be removed.

IMPORTANT
Boolean attributes like data-bsi-radio-item require an empty value ="" or
sample value like ="true".

38

3.3.2.16. link

The part is defined on the <a> element. As an option, the link content can be set with the data-bsi-
link-fixed-inner-html attribute. If this attribute is present, only the href attribute of the link can be
edited in the content editor. If the link text is to be placed in a tag within the hyperlink (e.g., in a
span next to an tag), the optional data-bsi-link-text-part attribute can be set on the tag.

IMPORTANT
Boolean attributes like data-bsi-link-fixed-inner-html could require an
empty value ="" or sample value like ="true".

Listing 49. Example usage of the link part.

<div data-bsi-element="cta" class="element cta">
 More
</div>

Listing 50. Example usage of the link part with data-bsi-link-fixed-inner-html.

<div data-bsi-element="cta" class="element cta">
 <a href="[dynamic_link]" data-bsi-element-part="link" data-bsi-link-fixed-inner-
html>

 <p> Some static content </p>
 <p data-bsi-element-part="formatted-text"> Add your text here! </p>

</div>

Listing 51. Example usage of the link part with data-bsi-link-text-part.

<div data-bsi-element="cta">
 <a data-bsi-element-part="link" href="#" role="button">
 <i class="icon icon-028-arrow-back"></i>
 The link text is

</div>

3.3.2.17. social-follow

A <div> element, contains <div> elements with a data-bsi-social-follow attribute. These attributes
contain the value of the respective social media service, such as "Facebook", "Twitter", "Pinterest",
etc.

The elements with data-bsi-social-follow must have the social-media-item class. This class is used
to manage the visibility of each individual social media channel in the editor.

The elements with data-bsi-social-follow must also contain an <a> element. The link href can be
preselected with a URL or with CX links in square brackets (e.g., [Facebook]).

39

The <a> element, in turn, can contain additional elements.

Listing 52. Example usage of the social-follow part.

<div data-bsi-element="social-follow" data-bsi-element-part="social-follow">
 <div data-bsi-social-follow="Facebook" class="social-media-item">

 </div>
 <div data-bsi-social-follow="Twitter" class="social-media-item">

 </div>
</div>

3.3.2.18. social-share

A <div> element, contains <div> elements with data-bsi-social-share. These attributes contain the
value of the respective social media service, such as Facebook, Twitter, Pinterest, or even e-mail.

The elements with data-bsi-social-share must have the social-media-item class. This class is used
to control the visibility of each individual social media channel in the editor.

The elements with data-bsi-social-share must also contain an <a> element. The link href can be
preselected with a URL or with Studio links in square brackets (e.g., [Facebook]).

To share it via e-mail, the content of the href is then a
mailto:?subject=(subject.with.title)&body=(description.with.url)

The <a> element, in turn, can contain additional elements.

The URL supports a list of wildcards that are specific to the social share part. When they are issued,
all wildcards are automatically URL-encoded. These wildcards cannot be selected in the step
configuration in Studio. The following wildcards exist:

url

The URL/internet address of the current Studio webpage or the user-defined URL.

description

The description text of the current Studio webpage or the user-defined description text (a
maximum of 300 characters).

description.short

Same as description, but a maximum of 140 characters; all additional characters are truncated.

description.with.url

Same as description; in addition, the url is added to the end of the description text.

40

title

The title of the current Studio webpage or the user-defined title (a maximum of 100 characters).

title.with.url

Same as title, and, in addition, the url is added to the end of the description text.

subject.with.title

Same as title, and, in addition, a text "Share web-site:" is added to the beginning of the title; is
used as the subject in an e-mail.

preview.image.url

The URL/internet address for the preview image of the webpage according to the configuration
in the content editor.

<div data-bsi-element="social-share" data-bsi-element-part="social-share">
 <div class="social-media-info">Share this page</div>
 <div data-bsi-social-share="E-Mail" class="sm-email social-media-item share">
 <a href=
"mailto:?subject=(subject.with.title)&body=(description.with.url)">
 </div>
 <div data-bsi-social-share="Facebook" class="sm-facebook social-media-item share">
 <a href="https://www.facebook.com/sharer/sharer.php?u=(url)" target=
"_blank">
 </div>
 <div data-bsi-social-share="LinkedIn" class="sm-linkedin social-media-item share">
 <a
href="https://www.linkedin.com/shareArticle?mini=true&url=(url)&summary=(title)&source
=FancyUnicorns" target="_blank">
 </div>
 <div data-bsi-social-share="Pinterest" class="sm-pinterest social-media-item
share">
 <a
href="http://pinterest.com/pin/create/button/?url=(url)&description=(title)&media=(pre
view.image.url)" target="_blank">
 </div>
 <div data-bsi-social-share="Twitter" class="sm-twitter social-media-item share">
 <a href="https://twitter.com/intent/tweet?url=(url)&text=(description.short)"
target="_blank">
 </div>
 <div data-bsi-social-share="WhatsApp" class="sm-whatsapp social-media-item share">

 </div>
 <div data-bsi-social-share="Xing" class="sm-xing social-media-item share">

 </div>
</div>

41

4. CX Design Creator

WARNING
Meanwhile BSI introduced a npm based design build, which superseded the CX
Design Creator. For more information see the design build wiki at GitHub.

The CX Design Creator was developed to facilitate the creation of templates. It is an executable file
for Windows, Mac, and Linux. No installation or additional software is required. The CX Design
Creator has the following functionality and tasks:

• Parsing Twig templates for HTML

• Formatting the generated HTML "nicely" and validating it

• Parsing LESS to CSS

• Parsing SASS to CSS

• Minifying and autoprefixing CSS

• Merging and minifying JavaScript

• Creating the ZIP file for the upload to BSI CX

Here is an example how the CX Design Creator is run from command line:

Figure 8. Run the CX Design Creator

Note the reference Webserver: http://127.0.0.1:1234. The CX Design Creator publishes all content-
elements that are mentioned in the file "preview-template.html" to a webserver. It is very useful to
check all changes on a certain content-element locally in your browser before a .zip file is uploaded
to a CX-Environment.

42

https://github.com/bsi-software/bsi-cx-design-build
https://github.com/bsi-software/bsi-cx-design-build/wiki
http://127.0.0.1:1234

Figure 9. Preview in a local browser

The CX Design Creator itself is configured with a YAML file compiler.yml:

Listing 53. Example of a compiler.yml file

engine: { version: '0.79.4' }
watch:
 - resources
 - properties.yml
 - template/src
task:
 ### bundle and process component specific less and javascript files
 - twig:
 - source: [template/src/_setup/components.less.twig]
 target: template/tmp/components.less
 model: [properties.yml]
 tidy: false
 validate: false
 - source: [template/src/_setup/components.js.twig]
 target: template/tmp/components.js
 model: [properties.yml]
 tidy: false
 validate: false
 - less:
 - source: [template/tmp/components.less]
 target: template/www/static/styles.css
 model:
 stack: [properties.yml]
 scope: [styles]
 js:
 - source: [template/tmp/components.js]
 target: template/www/static/scripts.js
 rm:
 - template/tmp/components.js
 - template/tmp/components.less

43

 ### copy resources
 - cp:
 - source: resources
 target: template/www/static
 ### create regular design files
 - twig:
 ### design.html
 - source: [template/src/base/twig/design.twig]
 target: template/www/design.html
 model: [properties.yml]
 ### content-elements.html
 - source: [template/src/base/twig/content-elements.twig]
 target: template/www/content-elements.html
 model: [properties.yml]
 ### preview-template.html
 - source: [template/src/base/twig/preview-template.twig]
 target: template/www/preview-template.html
 model: [properties.yml]
 ### design.properties
 - source: [template/src/base/twig/design.properties.twig]
 target: template/www/design.properties
 model: [properties.yml]
 tidy: false
 validate: false
 zip:
 - base: template/www
 source:
 - design.html
 - content-elements.html
 - preview-template.html
 - design.properties
 - static
 target: ../../Scaffold-1.0.1.zip
defaults:
 twig:
 validate: true
 tidy: true
 tabsize: 4
 comments: true
 less:
 compress: true
 js:
 compress: true
 global:
 charset: utf8
 compress: true
 failonerror: false
webserver:
 packages:
 - name: 'Company - Templates'
 designs:

44

 - name: 'Scaffold'
 viewports:
 - type: desktop
 width: 100%
 - type: desktop
 width: 940px
 - type: tablet
 width: 768px
 - type: mobile
 width: 360px
 templates:
 - file: template/www/preview-template.html
 language: Deutsch

A detailed description of the application and the configuration options would be beyond the scope
of this guide. Just one note: When creating designs with the CX Design Creator, the generated
artifacts (i.e., HTML, CSS, and Ja-vaScript files) should not be directly edited. Instead, any
modifications should be made in the source code itself.

Of course, you can also use a separate tool stack to develop a design. We do not recommend the
development of a design directly in HTML, CSS, and JavaScript. This may work with small
templates, but it quickly becomes confusing and error prone.

45

5. Help

5.1. Good practices
The following things have been established as good practice in some projects. However, this
approach is by no means mandatory and may vary depending on the project and individual
preferences.

5.1.1. Deleting or deprecating content elements

Over time, a design evolves and due to various reasons, a certain content element may become
obsolete. A good practice to phase-out a content element is to deprecate an element in a first step
instead of directly deleting it. Deprecating helps to inform the end user about a content element
that should no longer be added to new contents while still present in existing ones. In addition, it
makes manual content migrations easier (see Refactoring content elements). In a future release,
when you are sure that the content element is no longer actively in use, you can completely delete
the content element.

5.1.2. Refactoring content elements

While refactoring a content element, keep in mind that your changes to a content element should
never break existing content. We strongly advice to test your refactored content element to content
that was created under the old design version to make sure that you do not introduce breaking
changes. Critical points are renamings, changing the order for element parts and big changes to the
DOM structure. In spite of that, we do encourage you to refactor where necessary, remind you to
test carefully. If a refactoring is not possible due to migration issues, adding a new content element
and deprecating the preexisting one (see: Deleting or deprecating content elements) is a feasible
option.

5.1.3. Creating accessible designs

To ensure accessibility in CX contents, several things should be taken into account when developing
a design. They help to ensure that screen readers can read out the content in the best possible way
and that people with impaired vision will not be disadvantaged.

5.1.3.1. Layout

• All functionalities (form input fields and control elements) should be accessible and operable
using the keyboard (tab key). It must also be possible to exit all elements using the keyboard so
that the user can navigate through all content.

• Every website has a correct language declaration. If the main language of the page is English, all
texts should be in English. If the intention is to insert text in another language, then this should
be marked up accordingly with the lang attribute in the correct language.

• Enlargement is possible in the browser, both with "Zoom" and by setting a user-defined font size

• To ensure that screen readers interpret and parse all page content correctly, HTML elements of
a website must be implemented in accordance with their W3C specifications. The W3C’s

46

https://validator.w3.org/

Markup Validation Services can be used to check whether the source code of a website complies
with the W3C specifications.

5.1.3.2. Styling

• The contrast ratio of the font color to the background color is at least 4.5:1

• The contrast ratio of the font color of large font and the background color is at least 3:1

• If color differentiation alone is used, e.g. for links in a text, the links have a contrast ratio to the
surrounding continuous text of at least 3:1

• Each element must have a visible focus state that has a contrast ratio of 3:1 to the background
or non-focused state

• No spaces to create spacing, but CSS instead

5.1.3.3. Elements

• For information-bearing images, the alternative text must describe the visual information

• Headings are marked with the heading element (h1, h2, … , h6)

• The text size (font size) in web templates is defined in CSS in % or em

• Enumerations are formatted as lists (ul, ol, dl)

• Special text is formatted correctly, e.g. quotes as <blockquote> and <cite>

• Video content should have synchronous subtitles

• Data tables are formatted with the necessary markup, e.g. column, row and table headings are
labeled and headings and summaries are present

5.1.3.4. Forms

• Labels are present and meaningful. Labels and associated form input fields are logically linked
(implementation with for attribute for label elements). The label should be present prior to the
associated input field (exception: checkboxes, radio buttons).

• Form fields may have an additional information text to describe what input is expected. If, for
example, a certain format is expected, this should be described (e.g. "Date format:
DD.MM.YYYY"). This text should be placed in front of the input field.

• Mandatory fields should be marked (e.g. with *). The mandatory field star must not be
integrated via CSS, it should be placed directly in the label. The required attribute should be
added to the input element.

• A mandatory field explanation should be provided (e.g. "Please fill in all fields marked with *").
The information must appear before the first mandatory field.

• Error messages should appear directly below the relevant input field. They should have the
attributes aria-live="assertive" (or aria-live="polite") and role="alert" so that they are read aloud
by the screen reader as soon as they appear.

47

https://validator.w3.org/

5.2. Troubleshooting
In this chapter, we are collecting some common issues design developers may face in their
development process.

5.2.1. Design Upload

While uploading a design, BSI CX will parse the content of the ZIP file to ensure that the containing
design is valid. If the parser detects inconsistencies, an error message is displayed. The following
trouble shooting sections will help to correct the error.

TIP
It is helpful to to view the details of the error message by clicking on Details, if
available.

WARNING
In Versions prior to CX 1.2.48, the error message may be cut off in the message
box. Use Ctrl+C and paste the error message to any text file to view the full
details.

5.2.1.1. Validation error: File is missing

Figure 10. error message: file is missing

Your upload is missing a mandatory file. Please refer to File format where the mandatory files for
your design type is described in detail.

5.2.1.2. Validation error: Invalid content element in 'data-bsi-dropzone-allowed-elements'

48

Figure 11. error message: invalid content element in 'data-bsi-dropzone-allowed-elements'

① Error message

② Affected ZIP file

③ Affected file (within the ZIP file)

④ Name of the data-bsi-dropzone in which the error causing content element is placed

⑤ The name of the content element. In this case, the content element name is missing

In one of your data-bsi-dropzone-allowed-elements='' definitions, there is an element listed which
does not exist in the content-elements.html file. Common cases where this happens:

• A content element has been deleted but it is still referred by a dropzone

• A content element has been renamed and a dropzone is still referring to it under its previous
name

• A new content element has just been implemented, but there is a mismatch in naming. Check
again the name of your data-bsi-element and make sure it matches the name in the dropzone.

Listing 54. example of a badly referenced element in a dropzone

<!-- Design_de-CH.zip/design.html -->
<div data-bsi-dropzone="content"
 data-bsi-dropzone-allowed-elements="basic-cta hello-world">
 <!-- hello-world should be hello-text, see below -->
</div>

<!-- Design_de-CH.zip/content-elements.html -->
<div data-bsi-group="basic">
 <!-- in design.html, the element is incorrectly referenced under the name hello-
world -->
 <div data-bsi-element="hello-text" data-bsi-element-part="formatted-text">
 <p>Lorem ipsum</p>
 </div>
 <a data-bsi-element="basic-cta" href="#" data-bsi-element-part="link"
class="element basic-cta">Lorem ipsum
</div>

49

5.2.1.3. Validation error: Unknown content element part

Figure 12. error message: unknown content element part

The specified data-bsi-element-part is not supported by CX. For a list of supported element parts,
visit the Parts documentation chapter.

NOTE
In the example above, a text element part is specified. According to the
documentation, it must either be plain-text or formatted-text. Thus, it is unknown to
CX.

5.2.1.4. Validation error: Dropzone contains sample content element that doesn’t match the
structure of the reference content element

Figure 13. error message: Dropzone contains sample content element that doesn’t match the structure of
the reference content element

A discrepancy was discovered when using a content element as sample content. The example must
have the same HTML structure as the specified content element.

50

TIP A comparison of the two elements can be displayed by clicking on Details.

Listing 55. example of a sample content that does not match the specified content element

<!-- Content Element: Specification of the element (content-elements.html) -->
<div class="hello-world" data-bsi-element="basic-hello-world">
 <h1 data-bsi-element-part="plain-text">Placeholder</h1>

</div>
<!-- Content: sample content (design.html or content-elements.html) -->
<div class="hello-world" data-bsi-element="basic-hello-world">
 <h1 data-bsi-element-part="plain-text">Hello World, how are you?</h1> ①
 <p>just another text</p> ③
 ②
</div>

① OK: deviating text within an editable area (here: plain-text element part)

② OK: deviating attribute, which can be edited from CX for this type anyway

③ NOT OK: adding, manipulating or removing DOM nodes is not allowed

5.2.1.5. Validation error: Dropzone contains sample content that are not content elements

Figure 14. error message: Dropzone contains sample content that are not content elements

A dropzone can contain 0…n content elements. Only content elements are allowed as direct child
nodes of dropzones. Therefore, HTML that is not part of a content element must not be placed in a
dropzone.

Listing 56. example of a detached paragraph that must not be placed in a dropzone

<div data-bsi-dropzone="content" data-bsi-dropzone-allowed-elements="title-h1 title-h2
title-h3 basic-text basic-image basic-cta">
 <h1 data-bsi-element="title-h1" data-bsi-element-part="plain-text" class="element
title-h1">Lorem ipsum</h1>
 <p>The paragraph surrounding me is not part of a content element and therefore
must not be placed in the dropzone 'content'.</p>
</div>

51

5.2.1.6. Validation error: Part uses tag X but requires one of the following: Y,Z

Figure 15. error message: Part uses tag div but requires one of the following: a,img

Make sure to user proper HTML tags for your element parts. Consult the content element Parts
documentation for the validation error causing element.

In the example above, this would be the Image content element Parts documentation.

Listing 57. example of a incorrect HTML tag for a certain element part and how to fix it.

<!-- Invalid: uses <div> which is not an image -->
<div data-bsi-element-part="image" src="img.png" alt=""></div>
<!-- Correct way: use an tag -->

5.2.1.7. Validation error: The X tag must contain exactly one Y tag

Make sure to user proper HTML tags for your element parts. Consult the content element Parts
documentation for the validation error causing element.

5.2.2. Design Update

To update existing content onto the most recent version of a design, the content must be explicitly
updated by clicking the Update Design button in the content editor. Success or failure of such a
design update is indicated by a message box.

After an update, we advise to visually cross-check the content to make sure that a change in the
design has not broken your content. In case if you are seeing content that does no longer render
properly, your recent design version has introduced a flaw. in that case, you can revert the design
update by clicking on the cancel button in the content editor.

Be reminded that once an updated content is saved, there is no way to go back to the older design
version, unless you explicitly create a new version by selecting the respective checkbox next to the
save button before saving the content.

5.2.2.1. Design Validation

After hitting the design update button or after a modification of your content, you may see a
validation error indicated in the top-right corner.

52

the red exclamation mark indicates a validation error on design update

In such a case, there is an issue in the design used by your content. The most typical error messages
related to design issues are described in the following chapter. You may also see some that are
already described in the Design Upload section.

5.2.2.2. Content does not match the structure of the referenced content element

The structure of one of your content elements that is being used right now in your content does no
longer match it’s specification.

TIP
It is helpful to to view the details of the error message by clicking on Details, if
available.

WARNING

viewing validation error details

In versions prior to CX 1.2.48, the error message may be cut off in the message
box.

TIP Use Ctrl+C and paste the error message to any text file to view the full details.

53

The details of such an error message always have the same structure:

Content Element:
<div>....</div>

Content:
<div>.....</div>

If the difference is difficult to find, we recommend using a diff tool to compare the concrete content
with the content element specification.

The root cause of a difference between a concrete content and the content element specification
may be one of the following:

JavaScript

You have a JavaScript running that is manipulating your content element. To prevent your content
from being modified through a script, make sure that you update your <script> tags in your
design.html file so that the scripts will only be loaded if your content is not being edited right now
in the content editor. Removing a script tag from the DOM if the content is being edited can be
achieved by adding data-bsi-remove-if='draft'.

Listing 58. removing a sript in draft (edit) mode

<script data-bsi-remove-if="draft" src="your-javascript that manipulates-the-DOM.js"
></script>

Duplicate attributes

If you compare the specification of the content element to the actual content and the difference is
somehow related to a CSS value that is being replaced by the term placeholder, then you might
have defined the error causing HTML attribute twice.

Listing 59. invalid HTML will lead to issues

<!-- Invalid HTML: the attribute 'style' is defined twice -->
<img style="text-decoration: none;" src="img/example.png" style="width:100%; max-
width: 100%;"/>

<!-- By merging the 'style' attribute, we can fix the issue above -->
<img src="img/example.png" style="text-decoration: none; width:100%; max-width:
100%;"/>

54

Usage of invalid HTML

Some browsers detect and try to fix invalid HTML. Therefore, the DOM structure of the HTML is
modified by the browsers, whereas CX still expects the specified structure.

Listing 60. invalid HTML will lead to issues

<!-- Invalid HTML, as defined in content-elements.html -->
<table data-bsi-dropzone="table">
 <div data-bsi-element="text">...</div>
</table>

<!-- As soon as the HTML is dropped in CX, the browser will 'fix' the HTML, leading to
a different HTML for the concrete content -->
<table data-bsi-dropzone="table"></table>
<div data-bsi-element="text">...</div>

Inline SVG (older CX versions)

WARNING This section applies to installations prior to CX 1.2.48.

Inline SVG is not supported in older CX versions. As a workaround, you may save the SVG to a file
instead and include it with an tag. If it is a requirement to render the SVG inline, some
projects have successfully used the Open-Source library svg-inject as a fallback.

5.2.3. Dropzone Issues

If you face issues related to dropzones (a dropzone does not allow to drop your element, the
element is dropped in a different place, …), you may find a solution in this section.

5.2.3.1. Element is not dropable or being dropped in another place

WARNING This section applies to installations prior to CX 1.2.46.

Figure 16. element is being dropped outside of the dropzone (or nowhere)

This may happen if a dropzone name is duplicated. Dropzones must have unique identifiers in
older versions of BSI CX. Make sure that a unique name is specified for each usage of data-bsi-
dropzone.

55

https://github.com/iconfu/svg-inject

Listing 61. data-bsi-dropzone uniqueness violated

<!-- design.html -->
<div class="main-dropzone" data-bsi-dropzone="content" ①
 data-bsi-dropzone-allowed-elements=".....">
 <!-- ... -->
</div>

<!-- content-elements.html -->
<div class="image-area" data-bsi-dropzone="content" ②
 data-bsi-dropzone-allowed-elements="download-item"></div>

① A dropzone named 'content' is being defined properly

② Violation: another dropzone with the same name is defined again. Solution: change data-bsi-
dropzone to another value, e.g. data-bsi-dropzone="image-area-content"

5.2.4. Design Creator Issues

5.2.4.1. Why is the Design Creator End of Life?

We’ve built a next generation Design Build that is Open-Source and based on widely used tech
stack. You may find more information on GitHub.

5.2.4.2. Is there any detailed documentation for the CX Design Creator

Unfortunately there is no detailed documentation. We do no longer invest into the CX Design
Creator as our sucessor, the CX Design Build, is ready to use.

5.2.4.3. HTML Comments / MSO Tags missing after running the CX Design Creator

If you are using the CX Design Creator and your HTML in the design.zip is missing all HTML
comments and therefore all outlook specific code is missing, change the tidy property to false in
the compiler.yml:

defaults:
 twig:
 comments: true
 tidy: false

5.2.5. Content Editor Limitations

5.2.5.1. Using CSS viewport units

If you want to use CSS viewport units, e.g. viewport-height vh, please note the following:

The content displayed in the content editor is embedded in an iframe. When elements defined by a
CSS viewport unit are placed inside an iframe, the size of the iframe is used as a reference, not the
size of the screen as desired.

56

https://github.com/bsi-software/bsi-cx-design-build
https://github.com/bsi-software/bsi-cx-design-build

Therefore, the CSS classes bsi-ce-edit-mode and bsi-ce-preview-mode (see Content editor specific
CSS) should be used to define a fixed height/width as alternative to the viewport height/width for
proper display in the content editor and preview mode. It is also important to note that this fixed
height/width should be set as minimum size of the element with the CSS viewport unit. Otherwise
CX will calculate the size of the content editor incorrectly.

See the following example:

Listing 62. CSS of an element using viewport unit

.header-image {
 height: calc(100vh - 32px);
 min-height: 800px !important;
}
.bsi-ce-edit-mode .header-image,
.bsi-ce-preview-mode .header-image {
 height: 800px !important;
}

57

	Design Documentation: BSI Studio 1.2
	Covered Topics
	1. Introduction
	1.1. Getting started
	1.2. Technical Introduction
	1.3. Branding & Visual Design
	1.4. Constraints
	1.5. File format
	1.6. Content Editor
	1.7. Structure Reference
	1.8. Dropzones
	1.9. Groups

	2. design.properties
	2.1. The Basics
	2.2. Groups
	2.3. Content Elements
	2.4. Styles
	2.5. Configuration capabilities of the Rich Text Editor
	2.5.1. Feature list
	2.5.2. Value Lists

	3. Content Editor
	3.1. Content editor specific CSS
	3.2. Predefined Story outlets (Bracket Links)
	3.2.1. Using anchor links inside a design

	3.3. Content Elements and Parts
	3.3.1. Grouping
	3.3.2. Parts

	4. CX Design Creator
	5. Help
	5.1. Good practices
	5.1.1. Deleting or deprecating content elements
	5.1.2. Refactoring content elements
	5.1.3. Creating accessible designs

	5.2. Troubleshooting
	5.2.1. Design Upload
	5.2.2. Design Update
	5.2.3. Dropzone Issues
	5.2.4. Design Creator Issues
	5.2.5. Content Editor Limitations

