
Design Documentation
BSI CX 25.2

BSI Product Development

Version Date 2025-08-12

Covered Topics
1. Introduction. 2

1.1. Getting started . 2

1.2. Technical Introduction . 2

1.3. Branding & Visual Design . 3

1.4. Constraints . 4

1.5. Designs since BSI CX 22.0 . 4

1.6. File format . 5

1.7. Content Editor . 6

1.8. Content Security Policy (CSP) . 6

1.8.1. HTTP headers for public links . 7

1.8.2. HTTP headers for the index page of the BSI Customer Suite . 7

1.9. Structure Reference . 7

1.10. Dropzones. 8

1.11. Groups . 9

1.12. Additions to Designs in BSI CX 25.1 . 10

1.12.1. Including Handlebars Content Elements in design.hbs. 11

2. design.json . 13

2.1. The Basics . 13

2.2. Content Element Groups. 15

2.3. Content Elements . 15

2.3.1. Handlebars Content Elements . 16

2.4. Archiving content elements . 18

2.5. Styles . 18

2.6. Configuration capabilities of the Rich Text Editor . 21

2.6.1. Feature list . 22

2.6.2. Value Lists . 24

3. Content Editor . 29

3.1. Content editor specific CSS. 29

3.2. Predefined Story outlets (Bracket Links) . 30

3.2.1. Bracket links in iterators. 32

3.2.2. Styling of bracket links . 33

3.2.3. Using anchor links inside a design . 33

3.3. Content Elements and Parts . 33

3.3.1. Grouping . 34

3.3.2. Types . 35

3.3.3. Element Parts. 35

3.3.4. Template Parts . 51

3.4. Data BSI Attributes . 64

3.4.1. Control Attributes . 64

3.4.2. Form Processor Attributes . 66

3.5. Websites . 66

3.5.1. Terms . 66

3.5.2. Concepts . 67

3.5.3. Handlebars, Templates . 67

3.5.4. Configuration files . 76

3.5.5. Includes . 78

3.5.6. Content editor . 80

3.5.7. Pagination. 80

3.5.8. Metadata / Images for the navigation . 82

3.5.9. Security - Google reCAPTCHA . 83

3.5.10. Creation of websites from existing landingpage templates . 85

3.6. Teasers. 85

3.6.1. Server-side Rendering . 85

3.6.2. Client-side Rendering. 87

3.6.3. The JSON Design / Teaser Content Type. 88

4. CX Design Build. 92

5. Migrate an existing design to the new build . 93

5.1. Content Elements . 93

5.2. Styles . 95

5.3. Design and Preview Templates . 97

5.4. Java Script. 98

5.5. Stylesheets . 98

5.6. Properties . 98

5.7. Build Configuration . 99

6. Help . 101

6.1. Good practices. 101

6.1.1. Deleting or deprecating content elements . 101

6.1.2. Refactoring content elements . 101

6.1.3. Creating accessible designs . 101

6.2. Troubleshooting . 102

6.2.1. Design Upload . 103

6.2.2. Design Update . 107

6.2.3. Dropzone Issues . 110

6.2.4. Design Creator Issues. 111

6.2.5. Content Editor Limitations . 111

Wrong CX-version? Click here to get the documentations of all CX-versions.

1

https://bsi-software.github.io/bsi-cx-docs/

1. Introduction
Create experiences that delight customers. For marketing, sales, and service: Find, win, retain, and
understand customers with BSI CX. Design, execute and optimize perfect customer journeys.
Everything is cross-departmental, individualized for every customer, in real time, across all
touchpoints, and fully automated – for extraordinary and emotional experiences.

Learn more about all features of BSI CX by visiting our product website.

TIP
You wan’t to build a BSI CX Design? Learn how to use BSI designs by taking part in
the e-learning for designs!

NOTE
CX, Customer Experience and Studio. The BSI Customer Suite consists of multiple
Products, BSI CX is one of it. Formerly called BSI Studio, CX is an abbreviation of BSI
Customer Experience.

1.1. Getting started
Learn how to use BSI designs by taking part in the e-learning for designs.

The interactive e-learning helps you to reach your goal faster. We have developed this e-learning
from years of experience with various customers, with the aim of learning how to work with
designs quickly and delivering good results to the customer in a timely manner. In particular, you
will learn how to work with our templates so that you don’t have to start from scratch.

We recommend to start by adopting an existing design for BSI CX. This will help you to get started
and will already come with existing content elements which act as examples for your
customizations. BSI provides a set of design templates that are called Master Templates. The
Master Templates for email and web (including landingpage and website) are publicly available on
GitHub as an MIT licensed open source project.

Besides, the design build which is used to build the templates, as well as the library for email
content elements and web content elements on which the templates are based, are MIT licensed
open source projects.

Alternatively, you can start off from scratch by using the Scaffold Design and following the
guidance in this documentation to build a completely new template.

1.2. Technical Introduction
This documentation acts as the primary resource for developers that wish to implement a design
for BSI CX. For implementation of designs for BSI CX 22.0 and later, see also Designs since BSI CX
22.0 and our wiki at GitHub.

Designs are a vital part of BSI CX. While focusing on BSI CX Designs, a basic knowledge of the
following layers is necessary:

2

https://www.bsi-software.com/en/cx
https://academy.bsi-software.com/gb/en-GB/Details/92/
https://academy.bsi-software.com/gb/en-GB/Details/92/
https://github.com/bsi-software/bsi-cx-design-master-template-email
https://github.com/bsi-software/bsi-cx-design-master-template-web
https://github.com/bsi-software/bsi-cx-design-build
https://github.com/bsi-software/bsi-cx-design-standard-library-email
https://github.com/bsi-software/bsi-cx-design-standard-library-email
https://github.com/bsi-software/bsi-cx-design-standard-library-web
https://github.com/bsi-software/bsi-cx-scaffold-design
https://github.com/bsi-software/bsi-cx-design-build/wiki

Story

The Story controls the flow of a participant. It offers various steps which can be placed on the
storyboard via drag and drop. Your next customer journey delivering a landing page, event
invitation, website or newsletter will be born here.

Content

Websites, landing pages and newsletters require rich content. The content editor of BSI CX is
here to configure such contents. By user using Content Elements – reusable building blocks that
can be placed in your content via drag and drop – you can build attractive newsletters,
innovative landing pages and feature rich websites.

Design

The foundation of every Content is its design. The design defines the available „Content
Elements“, the visual representation of the content and the behavior of the content and content
elements. The Design must be created externally and uploaded into BSI CX. This documentation
covers how to build such designs.

1.3. Branding & Visual Design
Each brand has its own and unique visual design language. The branding guidelines of your
company or customer define the boundary conditions for building a design. As a design developer
for BSI CX, it is your responsibility to get a specification on how the website, landing page or
newsletter should look like and what elements it should consist of. Especially when it comes to
designing HTML emails, you may have to find a compromise between the developers' ideas of
visual design and the actual technical possibilities of HTML emails.

3

1.4. Constraints

IMPORTANT Our build and the CX-Editor has to be taken "as-is".

If the Design Validation fails or the Editor doesn’t show the Elements properly, it’s the responsibility
of the developer (probably you) to adjust the template accordingly.

There are some web technologies we do NOT support. Two common examples are:

• Webcomponents might work in the resulting landingpages, but are not supported within the
CX editor.

• Other Frameworks like Angular or React are familiar to most web developers, but not
supported by CX.

We strongly recommend you to use our npm build or the CX-Design-Creator. Feel free to contact the
design team, if you miss a feature or have an improvement idea.

We recommend to start by adopting an existing design for BSI CX. This will help you to get started
and will already come with existing content elements which act as examples for your
customizations. BSI provides a set of design templates that are called Master Templates. The
Master Templates for email and web (including landingpage and website) are publicly available on
GitHub as an MIT licensed open source project (see Designs since BSI CX 22.0). Alternatively, you
can start off from scratch by using the Scaffold Design and following the guidance in this
documentation to build a completely new template.

1.5. Designs since BSI CX 22.0
As of BSI CX 22.0, a new design build has been introduced to create design ZIP files that are
uploaded to BSI CX using a webpack build. The build is NPM based and replaces the previous BSI
Design Creator, which used to be available as an executable file. The technical adjustments that
come with the new design build are documented in the design build wiki at GitHub. Existing
designs can be migrated to the new design build using the migration instructions (see Migrate an
existing design to the new build).

In addition, new Master Templates for email, landingpage and website have been developed. As a
new feature, a library is available as a read-only core for these templates. This Standard Library
includes all content elements and the Master Template finally builds on this library. Furthermore,
new content elements, such as charts, are introduced in the Master Template and more CX features
(especially styles) come into play.

Both the Standard Library and the Master Templates are available as MIT licensed open source
software on GitHub to enable access to the source code, to enable notifications about new versions
and to collaborate on the templates through pull requests and issues:

• Email design: Master Template email and Standard Library email

• Landingpage and website design: Master Template web and Standard Library web

The current design zip files for uploading to CX are available for download in the GitHub releases

4

https://github.com/bsi-software/bsi-cx-design-master-template-email
https://github.com/bsi-software/bsi-cx-design-master-template-web
https://github.com/bsi-software/bsi-cx-scaffold-design
https://github.com/bsi-software/bsi-cx-design-build
https://github.com/bsi-software/bsi-cx-design-build/wiki
https://github.com/bsi-software/bsi-cx-design-master-template-email
https://github.com/bsi-software/bsi-cx-design-standard-library-email
https://github.com/bsi-software/bsi-cx-design-master-template-web
https://github.com/bsi-software/bsi-cx-design-standard-library-web

of the respective Master Templates.

1.6. File format

WARNING
Please refer to version 16.3 of the CX design documentation for file format up
to BSI CX version 16.3.

A BSI CX design is stored in a ZIP archive. A valid design for BSI CX since version 22.0 must contain
the following mandatory files:

design.html

Defines the design, particularly the dropzones the user can use in the BSI CX content editor to
place content elements. The exact design.html syntax is described below. This file must be in the
root of the ZIP file.

design.json

Contains metadata on the design, such as names and descriptions of the content elements and
groups. The exact design.json syntax is described in chapter design.json. This file must be in the
root of the ZIP file.

Besides these two mandatory files your design will need some content elements. Typically, a folder
named content-elements contains all content elements of the design as html files. These elements
can later be drag and dropped into the dropzones of the design.html. A content element is an HTML
snippet that does not require any Doctype, <html>, <head> or <body> tag.

Additional optional files and folders may be supplied in the ZIP file as well. Note that one ZIP file
can only contain a single design.

NOTE The files and folders in the ZIP file must not contain any umlauts.

The following folder structure showcases the content of a simple design:

design.zip
│ design.html ①
│ design.json ②
│ preview.html ③
│
├───content-elements ④
│ button.html
│ text.html
│
├───css
│ styles.min.css
│
├───img
│ logo.png
│
└───js

5

https://bsi-software.github.io/bsi-cx-docs/

 3rd-party.min.js
 scripts.min.js

① The mandatory file design.html defines the base layout of the page/email.

② The mandatory file design.json contains meta information about the design and its elements.

③ The optional file preview.html contains a preview of the base layout including some elements.

④ The content-elements folder holds all content elements html files.

1.7. Content Editor
The content editor is where specific websites, newsletters and landing pages are created. The
content creator relies on a design of good quality to build contents which on the other hand are
referred from a story.

Figure 1. example of the BSI CX content editor

1. Design preview in content editor

2. List of available content elements

3. Use of a customizable content element

1.8. Content Security Policy (CSP)
If a design requires resources from external servers, e.g. from a Content Delivery Network (CDN),
two settings must be checked in the BSI Customer Suite and, if necessary, adjusted according to the
needs of the design. The settings can be configured by a user with the appropriate permissions in

6

the BSI Customer Suite administration.

NOTE
Observe the notes on the integration of CSS and scripts in chapter Control
Attributes.

1.8.1. HTTP headers for public links

The HTTP headers including CSP settings for CX landing pages and websites are configured here.
These are relevant for displaying the landing pages and websites in the end user’s browser.

1.8.2. HTTP headers for the index page of the BSI Customer Suite

The HTTP headers including CSP settings for the index page of the BSI Customer Suite are
configured here. This includes the CX Content Editor. This setting overrides the server-side
configured default values for CSP.

This setting should be configured more restrictively than the setting for landing pages and websites
above. Only what is absolutely necessary for error-free display in the content editor should be
allowed. As a rule, styles and fonts are allowed, but not JavaScript.

IMPORTANT
The CSP settings configured here apply to the entire BSI Customer Suite GUI,
not just the CX Content Editor.

1.9. Structure Reference
The file design.html contains the frame of the design and must include at least one outermost
dropzone. It must contain valid, XHTML conform HTML with Doctype, <html>, <head> and <body>
tags.

The individual content elements are HTML snippets that are inserted into the content using drag &
drop.

7

Figure 2. structure reference

1.10. Dropzones
While dragging a content element into the content area, you will notice blue lines and blue areas.
These areas are called dropzones and identify areas where certain content elements can be placed.
Each dropzone has a list of allowed content elements that are specified in the design. A dropzone is
defined by adding the attribute data-bsi-dropzone to an HTML container element (e.g. <div> or
<table>). The list of allowed content elements is specified by the data-bsi-dropzone-allowed-elements
attribute. An optional limit of elements that can be placed inside the dropzone is defined by adding
the data-bsi-dropzone-max-number-of-elements attribute.

8

Listing 1. A dropzone that allows to place a maximum of one pre header element inside a newsletter design

<div data-bsi-dropzone="preheader-zone" data-bsi-dropzone-allowed-elements="nl-
preheader" data-bsi-dropzone-max-number-of-elements="1">
 <!-- Add element -->
</div>

WARNING
Problems can occur when placing a dropzone into a link or button element. In
this case, we recommend using a style.

1.11. Groups

9

All content elements can be structured in
groups. In the example screenshot on the left
side, three groups are defined: Header, Headings
and Text & Images. The structuring of content
elements in such groups is implemented in the
design.json file. For more information see
chapter Content Element Groups. A group may
be defined only once.

1.12. Additions to Designs in BSI CX 25.1
Starting BSI CX 25.1 a new Schema-Version of the design.json file is allowed: 25.1. This schema
version enables handlebars content elements. Handlebars is a templating engine that decouples the
user input in the content element editor from the concrete DOM structure that is rendered into the
BSI CX content.

Since Handlebars templates always need an object supplying the variables for rendering (in our
case as a JSON-document), the structure of the design ZIP changes slightly.

design.hbs

Instead of a design.html a handlebars template can be supplied. It will be preprocessed
(rendered) before being loaded into the content editor.

design-context.json

This JSON-document supplies the variables used to render design.hbs. In the case of websites this
file can be omitted, since in the context of BSI CX websites, the context is supplied on include-
level.

10

design.zip
│ design.hbs ①
│ design-context.json ②
│ design.json
│ preview.html
│
├───content-elements
│ button.html
│ text.html
│
├───css
│ styles.min.css
│
├───img
│ logo.png
│
└───js
 3rd-party.min.js
 scripts.min.js

① The file design.hbs supplants the formerly used design.html.

② Once Handlebars content elements are being used in design.hbs, the design-context.json file
becomes mandatory.

1.12.1. Including Handlebars Content Elements in design.hbs

HTML content elements could be included in the design.html by copying the DOM from the content
element source file into the body of the design. Changes in the default value took place directly in
the DOM of the design. Handlebars content elements work analogous.

The template from the content element source code can be copied into the design.hbs, but two
additional steps are necessary. Let’s take the example of a simple text paragraph content element.

The content element consists of a Handlebars template, and a variable context as such:

Listing 2. The template of the content element as defined in the design ZIP.

<div class="paragraph-light" data-bsi-element="paragraph">{{paragraph.value}}</div>

Listing 3. The accompanying context with the variables for the template.

{
 "paragraph": {
 "value": "Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy
eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua."
 }
}

11

After copying the Handlebars template to design.hbs, we need to supply the values for the variables
contained in the element in design-context.json. This is achieved by adding the custom attribute
data-bsi-context-scope with a unique name for the element on content element. All variables used
within the element need to be prefixed with this unique name. This unique name then also refers to
the element in design-context.json:

Listing 4. Part of design.hbs.

<div class="paragraph-light" data-bsi-element="paragraph" data-bsi-context-
scope="headingParagraph">{{headingParagraph.paragraph.value}}</div>

Listing 5. A complete design context referencing the Handlebars content element above.

{
 "headingParagraph": {
 "paragraph": {
 "value": "Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam
voluptua."
 }
 }
}

12

2. design.json

2.1. The Basics

WARNING
BSI CX 22.0 introduced the design.json file, which replaces the previously used
design.properties file. Information on the legacy design.properties can be
found in the CX design documentation for CX version 1.3 or earlier.

WARNING
If you are using the CX Design Build, the design.json file is generated
automatically and no manual adjustments should be made to this file.

Metadata for a design is defined in the design.json file. It contains general information on the
design, such as the name and author, as well as element specific information, such as with which
description and icon the elements are to be displayed to the right of the editor.

Listing 6. Specifying design meta data

{
 "title": "My Customer Design",
 "author": "John Doe, Doe Design Agency"
}

Group information, content element specific entries, configuration capabilities for styles (allowing
you to mixin different CSS styles or adding certain features using JavaScript) as well as instructions
on how to customize the rich text editor experience can be found in the subsequent chapters.

Listing 7. Example of a fully featured design.json file

{
 "__REM000": "-------------------- Metadata --------------------",
 "title": "My Customer Design",
 "author": "John Doe, Doe Design Agency",
 "schemaVersion": "22.0",
 "defaultLocale": "en",
 "__REM001": "-------------------- Content-Elements, -Groups and -Parts
--------------------",
 "contentElementGroups": [
 {
 "groupId": "buttons-and-links",
 "label": "Buttons & Links",
 "contentElements": [
 {
 "elementId": "button",
 "label": "Button",
 "icon": "megaphone",
 "file": "content-elements/button.html",
 "parts": [
 {

13

https://bsi-software.github.io/bsi-cx-docs/

 "partId": "link",
 "label": "Button"
 }
],
 "styleConfigs": [
 "background-color"
]
 }
]
 },
 {
 "groupId": "text-and-images",
 "label": "Text & Images",
 "contentElements": [
 {
 "elementId": "text",
 "label": "Text",
 "icon": "text",
 "file": "content-elements/text.html",
 "parts": [
 {
 "partId": "formatted-text",
 "label": "Text",
 "htmlEditorConfig": "custom"

 }
]
 }
]
 }
],
 "__REM002": "-------------------- Style Configs --------------------",
 "styleConfigs": {
 "background-color": {
 "label": "Background color",
 "styles": [
 {
 "styleId": "background-color-green",
 "label": "Green",
 "cssClass": "green-background"
 },
 {
 "styleId": "background-color-red",
 "label": "Red",
 "cssClass": "red-background"
 }
]
 }
 },
 "__REM003": "-------------------- HTML Editor Configs --------------------",
 "htmlEditorConfigs": {

14

 "custom": {
 "features": [
 "bold",
 "italic",
 "underline",
 "textColor"
],
 "textColors": [
 "#16616d",
 "#383e42"
]
 }
 }
}

2.2. Content Element Groups
Each content element is assigned to a group. Add an entry to the design.json file to specify an
identifier and a display name for each group element.

Listing 8. Giving groups clearly identifiable descriptions

"contentElementGroups": [
 {
 "groupId": "buttons-and-links",
 "label": "Buttons & Links"
 },
 {
 "groupId": "text-and-images",
 "label": "Text & Images"
 }
]

2.3. Content Elements
For each content element the following entries should be defined in order to get a clean user
experience. The element identifier is the value of the data-bsi-element attribute, that is defined in
the corresponding html file.

Listing 9. Important metadata for content elements

"contentElements": [
 {
 "elementId": "logo",
 "label": "Cooperate Logo",
 "description": "Visualize your corporate logo",
 "icon": "image",
 "file": "content-elements/logo.html",

15

 "parts": [
 {
 "partId": "image",
 "label": "Mobile image for Logo"
 }
]
 }
]

Refer to the following illustration to pick a value for icon.

Figure 3. icon identifier reference

For element parts, labels can be defined. Those are then used as section headings while editing a
content element in the content editor. partId is the data-bsi-element-part value of the element part.

2.3.1. Handlebars Content Elements

IMPORTANT CX 25.1

If the schema version is set to 25.1, this enables the new Handlebars content element feature.

Listing 10. Metadata for a Handlebars content element

{
 "elementId": "paragraph",

16

 "type": "template-element", ①
 "file": "content-elements/content/paragraph.hbs",
 "contextFile": "content-elements/content/paragraph.json", ②
 "icon": "heading",
 "label": "Paragraph",
 "templateParts": [③
 {
 "partId": "formatted-text",
 "partContextId": "paragraph", ④
 "label": "Paragraph-Text"
 }
]
}

① The type attribute is mandatory for Handlebars content elements and needs to be set to
template-element. The other values are optional and include html-element and pre-defined-
include.

② In addition to the source file, Handlebars elements need a context-file containing the variables
supplied by the Template Parts.

③ Instead of a list of Element Parts (parts), Handlebars elements only have a list of Template Parts.

④ Context-ID that is used to refer to the Template Part in the template.

2.3.1.1. Special Case: Composite Elements

Composites for Handlebars Elements have to be declared separately, as such:

{
 "elementId": "two-column-with-content",
 "type": "template-element",
 "composite": true, ①
 "file": "content-elements/content/two-column-with-content.hbs",
 "contextFile": "content-elements/content/two-column-with-content.json",
 "icon": "two-columns",
 "label": "Zweispalter mit Beispielinhalt"
} ②

① The new attribute composite needs to be set to true explicitly.

② No Template Parts are explicitly set. They are defined in the non-composite content elements
that make up the composite.

IMPORTANT
Every content element used in a composite needs to exist as a stand-alone
element. If the stand-alone element should not be visible in the content
editor, it can be hidden using "hidden": true.

A composite element needs to be built-up like building design.hbs: Every constituent element needs
a data-bsi-context-scope and this scope is then used to assemble the element context.

17

2.4. Archiving content elements
As of CX 23.2, it is possible to archive content elements in a design without losing these elements in
an existing content after updating the design.

To do so, the archived attribute of corresponding elements are set to true in the design.json file.

Archived elements are still available in the design, but are no longer accessible in the content editor
in the selection list of elements. Therefore it is no longer possible to insert them into a content. If
they are already contained in a content, they can still be edited and moved, but can no longer be
copied or pasted.

Listing 11. Marking a content element as archived

"contentElements": [
 {
 "elementId": "button",
 "label": "Button",
 "icon": "megaphone",
 "file": "content-elements/button.html",
 "archived": true
 }
]

2.5. Styles

WARNING
CX 23.2 introduced a new json format for the definition of styles. However, the
previous format is still supported. A design for CX 22.0 or earlier therefore
does not need to be migrated to the new styles format.

By defining styles for a certain content element, its characteristics can be controlled. By using styles
to make a content element configurable, it is not necessary to implement an additional content
element for an almost identical content element. A requirement to implement a button in two
different colors (red and green) would therefore be implemented by creating a button content
element with two styles: red and green. Styles are only defined once, and each element can have 0
to n style capabilities. Each style capability will then be transformed to a dropdown in the editing
dialog of a content element, where the specific style can be applied to a content element.

18

Figure 4. example of a style dropdown

Styles can be defined in two ways:

CSS classes

One cssClass can be defined for each style option. If a style option is selected, the corresponding
CSS class is added to the content element at the level of the data-bsi-element attribute.

DOM manipulations

One or more domManipulations can be defined per style option using a selector, attribute and
value. When a style option is selected, DOM elements within the content element are selected
using the selector and the value of the attributes, e.g. an inline style (style), a CSS class (class) or
other attributes (e.g. align) are manipulated.

Listing 12. Defining style capabilities

"styleConfigs": {
 "background-color": {
 "label": "Background color",
 "styles": [
 {
 "styleId": "background-color-green",
 "label": "Green",
 "cssClass": "green-background", ①
 "domManipulations": [②
 {
 "selector": "div.bg-color",
 "attribute": "style",
 "value": "background-color: #18a92b; color: #ffffff;"
 },
 {
 "selector": "div.bg-color h1.heading",
 "attribute": "align",
 "value": "center"
 }
]
 },

19

 {
 "styleId": "background-color-red",
 "label": "Red",
 "cssClass": "red-background",
 "domManipulations": [
 {
 "selector": "div.bg-color",
 "attribute": "style",
 "value": "background-color: #a21d1d; color: #ffffff;"
 },
 {
 "selector": "div.bg-color p",
 "attribute": "class",
 "value": "text-on-red-bg"
 }
]
 }
]
 }
}

① Defining a cssClass

② Defining of domManipulations

When using styles, please consider as follows:

• 1 to n styles can be defined to appear as individual dropdowns in the editor, where one style
option can be selected.

• A style option can have 1 to n domManipulations but only 1 cssClass.

• cssClass and domManipulations can be combined or used individually. styleId must always be
set.

• When a DOM manipulation is created with the style or class attribute, the value of the selected
style option is added to the list of values currently present on the element. Only the values
defined in the corresponding, unselected style options are overwritten. Independent values
remain unchanged. In contrast, when using other attributes, e.g. width, the value is not
appended when the style option is selected, but will instead be overwritten.

WARNING
It is strongly recommended that styles in email templates are not set via CSS
classes, but via DOM manipulations with the style attribute, as many email
clients still require certain styles to be set via inline styles.

TIP
Useful for the development of e-mail templates that are optimized for MS Outlook:
MSO conditional comments can also be selected and manipulated with the DOM
manipulation selector.

The following shows how a style can be applied on a content element using cssClass. If a style is
preselected on an element, it is sufficient to add the desired CSS class to the respective element in

20

the HTML.

Listing 13. Assigning style capabilities to content elements

"contentElements": [
 {
 "elementId": "button",
 "label": "Button",
 "styleConfigs": [
 "background-color",
 "border-color",
 "text-color"
]
 }
]

Listing 14. CSS class for a style

.colored-button.green-background { background-color: green; }

.colored-button.red-background { background-color: red; }

Listing 15. How styles are applied on content elements

<button data-bsi-element="button" class="colored-button green-background"></button>

2.6. Configuration capabilities of the Rich Text Editor
By defining a content element part of type formatted-text, a fully featured rich text editor will be
available to the users of the content editor. The built-in WYSIWYG rich text editor is powered by
Froala. BSI allows to customize a subset of Froala features directly out of a design. In order to do so,
a configuration section in the design.json can be used to customize the features of the rich text
editor. Each element part of type formatted-text can have its own custom list of features, although
in most cases one feature definition is shared among different content elements.

A typical, simple rich text editor configuration will look like this:

Listing 16. Rich text editor configuration example

"htmlEditorConfigs": {
 "my-config": {
 "features": [
 "bold",
 "italic",
 "underline",
 "textColor"
],
 "textColors": [
 "#ff00cc",

21

https://froala.com/

 "#aabbcc"
]
 }
}

The above configuration (named my-config) needs to be assigned to a concrete element part in
order to apply the customizations:

Listing 17. Applying an HTML editor configuration on a content element 'text'

"contentElements": [
 {
 "elementId": "text",
 "label": "Text",
 "parts": [
 {
 "partId": "formatted-text",
 "label": "Text",
 "htmlEditorConfig": "my-config"

 }
]
 }
]

The entire list of supported configuration options is documented in the subsequent chapters.

2.6.1. Feature list

The most important configuration option is the list of features that will be shown in the WYSIWYG
editor.

If one wants to support bold, italic, and underlined text, the definition for doing so would be like
this:

22

Listing 18. Feature list example

"htmlEditorConfigs": {
 "my-config": {
 "features": [
 "bold",
 "italic",
 "underline"
]
 }
}

Each key in the list below (indicated in bold) identifies a certain feature, which is then displayed as
a separate button in the editor. The sequence is irrelevant and does not affect the display order, as
the display order is given by the server-side implementation.

The following features are available:

bold the text can be formatted in bold.

italic the text can be formatted in italics.

underline the text can be underlined.

strikeThrough the text can be displayed with a line through the center.

subscript the text can be displayed as a subscript.

superscript the text can be displayed as a superscript.

fontSize the font size can be changed based on the font-sizes value list.

lineHeight the line height can be changed based on the line-heights value list.

textColor the text color can be changed based on the text-colors value list.

backgroundColor the background color can be changed based on the background-colors
value list.

alignLeft the text can be left aligned.

alignCenter the text can be centered.

alignRight the text can be right aligned.

alignJustify the text can be justified (As most browsers are terrible in handling
justified text properly, we recommend to not enable this feature).

formatOL the text can be displayed as an organized list.

formatUL the text can be displayed as an unorganized list.

23

outdent the text can be outdented (useful for sub-lists).

indent the text can be indented (useful for sub-lists).

paragraphFormat changes the format of the paragraph based on the formats value list.

quote display the text as a quote.

specialCharacters inserts special characters.

emoticons inserts emoji.

insertLink permits the immediate insertion of links without having to use a
wildcard.

html displays and edit the HTML of the text.

help displays Help.

In addition, the following features are always displayed in the editor and must therefore not be
listed separately:

clearFormatting clears all formatting from the selected text.

undo undoes the change.

redo redoes the change.

fullscreen displays the editor in full screen mode.

selectAll selects the entire text in the editor.

Our experience has shown that these features are useful in the vast majority of cases and that the
editing experience would be significantly affected without them.

2.6.2. Value Lists

A list of values that will be shown in the editor can be defined for certain features (e.g. the list of
colors when the font color feature is active).

Listing 19. An example using configuration with different value lists set

"htmlEditorConfigs": {
 "my-extended-config": {
 "features": [
 "bold",
 "italic",
 "underline"
],
 "textColors": [
 "#16616d",
 "#ff7d00",

24

 "#383e42"
],
 "backgroundColors": [
 "#ffffff",
 "#383e42"
],
 "formats": [
 "p",
 "h1",
 "h2",
 "pre"
],
 "fontSizes": [
 12,
 16,
 24
],
 "fontSizeUnit": "px",
 "fontSizeDefault": 16,
 "lineHeights": [
 1,
 1.15,
 1.5,
 2
],
 "enter": "p"
 }
}

2.6.2.1. Colors

To customize the color picker for textColor and backgroundColor, provide a list of colors as follows:

Listing 20. textColor example

"textColors": [
 "#16616d",

25

 "#ff7d00",
 "#383e42"
]

Listing 21. backgroundColor example

"backgroundColors": [
 "#ffffff",
 "#383e42"
]

2.6.2.2. Paragraph formats

Paragraph formatting and headings can be configured as well. This may be customized through the
formats value list, which will only have an effect if the feature paragraphFormat is active.

Listing 22. formats example

"formats": [
 "p",
 "h1",
 "h2",
 "pre"
]

The following formats can be provided:

p for an html paragraph (<p>)

h1 for an html H1 title (<h1>)

h2 <h2>

h3 <h3>

h4 <h4>

h5 <h5>

h6 <h6>

pre for preformatted text (<pre>)

2.6.2.3. Line heights

To customize the lineHeight value list, provide a list of heights in percentages, comma separated.
The line height values define the factor by which factor the current line height is multiplied based
on the font size used.

26

Listing 23. lineHeight example

"lineHeights": [
 1,
 1.15,
 1.5,
 2
]

2.6.2.4. Font size

To customize the list of font sizes, provide a list of sizes for fontSizes. A custom default value can be
set by using fontSizeDefault.

Size information is provided numerically. If several sizes are permitted, then each individual entry
is listed in a comma separated format. The data on font sizes (font size and font size default) are
absolute values.

The unit of measurement (fontSizeUnit) defines which unit to be used for information regarding
the font sizes. The following are permitted:

px Pixels

em Relative to font size of the parent

rem Relative to font size of the root element

pt Points

cm Centimeters

mm Millimeters

Listing 24. fontSizes, fontSizeUnit and fontSizeDefault example

"fontSizes": [
 8,
 12,
 16,
 24,
 32
],
"fontSizeUnit": "px",
"fontSizeDefault": 16

2.6.2.5. Entry mode

By defining the entry mode (enter), you define what happens in the editor when the Enter key on
your keyboard is pressed. The following options are available:

27

p to enclose the text with a paragraph (<p>)

div to enclose the text with a <div> tag

br to simply insert a
 tag for a line break

In p and div modes, there is the option to force a simple line break with Shift  +  Enter . This will add

 without immediately ending the block and starting a new one.

Listing 25. enter mode example

"enter": "div"

28

3. Content Editor

3.1. Content editor specific CSS

IMPORTANT CX 1.2.46

Sometimes it is useful to apply special CSS rules to the content when the page is in edit or preview
mode. There are two special CSS classes set on the document’s <html> tag to address such use cases:

• bsi-ce-edit-mode is set when the document is shown in the content editor.

• bsi-ce-preview-mode is set when the document is shown in preview mode inside the content
editor.

The preview mode outside the content editor or any content that is delivered by a story will not
have any of the above listed classes.

Listing 26. editor specific CSS example: HTML

<html><head><!-- head omitted --></head>
<body>
 <h1 class="hide show-if-edit">this is edit mode</h1>
 <h1 class="hide show-if-preview">this is preview mode</h1>
 <!-- rest of body omitted -->
</body>

Listing 27. editor specific CSS example: CSS

.hide { display: none; }

.bsi-ce-edit-mode .show-if-edit { display: block; color:green; }

.bsi-ce-preview-mode .show-if-preview { display: block; color:darkorange; }

Table 1. editor specific CSS example: resulting representation in the content editor

Edit mode

Preview Mode

29

Edit mode

3.2. Predefined Story outlets (Bracket Links)
One way to define a link out of a design is to use a data-bsi-element-part="link" annotation on a
link (<a>) element. Doing so will add a link editor to enter a URL and a link text to the content
editor.

Listing 28. Adding an editable link to a content element.

<a data-bsi-element-part="link" href="https://www.bsi-software.com/">BSI Website

30

Figure 5. visualization of an editable link

Another way to define a link directly out of a design is by using the CX bracket link syntax for links.
This mechanism in built into the content editor itself to create a link anywhere in a text.

Listing 29. Example on adding a link anywhere in the text.

If you do not wish to receive further
promotions, you can [unsubscribe] now.

1. Definition of links using the CX bracket syntax.

2. Each link is converted into a story outlet. Each outlet can then be linked to an individual action
in the story.

3. The content that is delivered to the user.

While rendering the above content, CX will convert the [unsubscribe] term to a link tag internally,
create a unique hyperlink and will add a new outlet to the step to which the current content
belongs. When using bracket links, the story designer will see the provided link as a story outlet by
default. This allows the Story Designer to link the click action on the link with other steps (e.g. a
subsequent landing page step). In the example above, the Email Step will already have an outlet
named unsubscribe. The bracket technique itself is usable everywhere in the content editor and is
not limited to the usage in a design.

The convenience format of a bracket link for CX is [link text|ID]. The full syntax is [ID|text=link
text|url=https://example.com|newWindow].

You may use the following optional parameters:

31

• url can be used to explicitly specify an absolute URL.

• newWindow will force to open the target in a new tab or window.

• follow removes the nofollow value from the html rel attribute. Without nofollow, bots are
allowed to crawl your page (not recommended for personalised links).

• login creates a link having the query parameter ?login, which redirects to the login page in a
website.

• logout creates a link having the query parameter ?logout, which removes the authenticated
user from a CX HTTP session in a website.

If a bracket itself should be part of a link, it can be escaped with a backslash (e.g. [\[click me\]|id]
will then be visualized as [click me]).

You can also place a bracket link anywhere in the design. An example of doing so is to add it to an
href of a link.

Listing 30. Adding a bracket link to a link will allow us to track the "Facebook" link in CX.

WARNING
Be reminded that all CX will replace everything that looks like a bracket link. It
is your responsibility as a developer to use escaping where brackets have a
different meaning.

Listing 31. Escaping is important in cases like this one.

<!-- CX will convert this to a bracket link -->
<input pattern="[0-9]">

<!-- escaping is mandatory for the pattern mechanism to work as desired -->
<input pattern="\[0-9]">

3.2.1. Bracket links in iterators

When you display data in a table, you will use the iterator feature of BSI CX. In this example we
display a list of blog articles.

In the content editor you use a table content-element. You activate the 'Dynamic table' checkbox in
the editor form. Now you define the columns. Let’s assume we have 3 columns:

• {blog.title}

• {blog.releaseDate}

• [blog.details] [blog.edit]

The third column defines two iterator bracket links. The link ID must start with the entity prefix,
which is followed by an arbitrary name that defines the function of the link.

32

When you use this content in a media step in the storyboard, the step will provide a GUI, to pick an
entity and the values for the placeholders 'title' and 'releaseDate'. For the two links the step will
generate two outlets. A consequent step connected to these outlets can pick from the iterator
property which is labeled with 'Chosen via link' and can access the properties of that distinct
iterator item.

3.2.2. Styling of bracket links

When CX converts a [placeholder] term internally into a link tag, it adds the CSS class placeholder-
link to the a tag. This allows bracket links to be selected and styled separately from other link
elements.

Listing 32. How to style a CX bracket link using the CSS class placeholder-link

a.placeholder-link {color: #fe9915;}
.footer-div a.placeholder-link {color: #ffffff;}

It should be noted that the CSS class is not set until the live content is rendered. For this reason, you
won’t find the styling, referring to the CSS class placeholder-link, in the content editor, but only - in
the case of email content - in the sent email.

3.2.3. Using anchor links inside a design

First of all, it is possible to use anchor links in the form of #top inside a CX design. Anchor links are
allowed as targets of link parts. However, it is not possible to use anchor links as url of a bracket
link. This is due to the fact, that bracket links meant to be trackable by CX and this requires a
complete roundtrip to the server.

Listing 33. How to use anchor links in a design.

<section id="news">
 <!-- some news -->
</section>

<!-- some more html code -->

<div data-bsi-element="cta">
 Jump to news
</div>

3.3. Content Elements and Parts
This chapter describes the structure of the content-elements.html file and the available content
elements. The content-elements.html file contains HTML snippets for the content elements that can
be selected in BSI CX. To do so, BSI CX searches for elements with the data-bsi-element attribute in
the HTML code. The recommendation is to define all content elements at the same level as the
DOM, for example, as <div> directly below the <body> element. However, for better visualization
during development, the developer can also create additional elements (e.g., with CSS borders or

33

margins) around the elements marked with data-bsi-element. BSI CX will ignore those, though.

TIP
It is not necessary for the content-elements.html file to have a <html>, <head> or <body>
tag. But the containing HTML must be valid.

The following listing illustrates a very simple content element:

<div data-bsi-element="logo">

</div>

As we can see in the listing, data-bsi-element defines the identifier of the content element. It must
not contain any spaces. The identifier corresponds to the value that can be used in the attribute
called data-bsi-dropzone-allowed-elements in the dropzone. The element marked with the identifier,
when used, is inserted into the relevant dropzone (not only the child elements).

WARNING
The content editor specifically highlights the content elements. To make sure
this works properly, all content elements must be block elements rather than
inline elements.

A content element can define one or more internal dropzones. The definition is the same as for
design.html. For example, use it with a content element for a 3-column layout with three internal
dropzones. While the dropzones may be nested arbitrarily, please pay attention to usability.

3.3.1. Grouping

Complex designs can consist of many elements. For better organization, it is mandatory to group
the elements. To do so, the data-bsi-group attribute can be used. The following listing illustrates
such a grouping:

<div data-bsi-group="texts">
 <div data-bsi-element="default-text" data-bsi-element-part="formatted-text">
 <p>Lorem ipsum</p>

 lorem
 ipsum

 </div>
 <div data-bsi-element="raw-text" data-bsi-element-part="plain-text">Lorem
ipsum</div>
</div>
<div data-bsi-group="images">
 <div data-bsi-element="full-size-image">

 </div>
</div>

34

3.3.2. Types

There are two distinct styles of content elements:

• HTML-Elements: HTML-Elements only consist of HTML Element Parts. Element Parts specify a
fixed structure of a DOM-subtree that is directly manipulated inside the content editor. This
type has been supported ever since the release of CX.

• Handlebars-Elements: Handlebars-Elements use Handlebars as template engine. The element
consists of Template Parts that specify parts of the element editor. The HTML of the element is
created by rendering the Handlebars-Template with the variables exported by the Template
Parts. Handlebars-Elements cannot include traditional HTML Element Parts.

3.3.3. Element Parts

A content element part references, inside a content element, an area (such as text or image) that
can be edited directly with the BSI CX content editor. The content element "text with image" knows,
for example, the two areas image and plain-text. The identifiers must be adopted exactly as they
are. The following listing illustrates the example:

<figure class="element text-with-image" data-bsi-element="text-with-image"> ①
 ②
 <figcaption class="text" data-bsi-element-part="plain-text">Lorem
ipsum</figcaption> ③
</figure>

① This is the content element definition.

② The image part defines an editable image.

③ The plain-text part defines an editable plain text.

TIP
The individual parts are likely to contain sample content already. This content must fit
in terms of the structure (e.g., only plain text with plain-text, and a correct table
definition with table, etc.)

3.3.3.1. Plain Text

The part plain-text can be applied to any HTML element that can contain text. The text is inserted
within the element. The element must not have children with other content element parts (content
is removed). A single-line text field without formatting is available as the editor. When using the
optional attribute data-bsi-multiline, the text field becomes multiline.

IMPORTANT
Boolean attributes like data-bsi-multiline require an empty value ="" or
sample value like ="true".

Listing 34. Sample usage of the plain text part.

<h1 data-bsi-element="title-h1" data-bsi-element-part="plain-text" class="element

35

title-h1">Lorem ipsum</h1>

Listing 35. Sample usage of the plain text part with the multiline feature.

<p data-bsi-element="paragraph" data-bsi-element-part="plain-text" data-bsi-
multiline="">Lorem ipsum
dolor sit amet</p>

3.3.3.2. Formatted Text

The part formatted-text can be applied to any HTML element that can contain text. The element
must not have children with other content element parts (content is removed). The rich text field
with a limited number of formatting options is available as an editor. For more information about
the available configuration options see chapter Configuration capabilities of the Rich Text Editor.

Listing 36. Sample usage of the formatted text part.

<section data-bsi-element="section" data-bsi-element-part="formatted-text">
 <h1>Lorem ipsum dolor sit amet</h1>
 <p>Proin porta pharetra est non molestie.</p>
 <p>More</p>
</section>

3.3.3.3. HTML

The html part can be applied to any HTML element. The code is inserted within the element. The
element must not have children with other content element parts (content is removed). A text field
is used as the editor. HTML can be written directly into this field.

Listing 37. Sample usage of the HTML part.

<div data-bsi-element="html" data-bsi-element-part="html">
 <iframe src="https://www.openstreetmap.org/export/embed.html" style="height:
500px;"></iframe>
</div>

This part can be useful for:

• Prototyping

• Quick-and-Dirty Hacks

• Embedding any HTML code

WARNING
It is not allowed to place any data-bsi-element or data-bsi-element-part
attributes inside the HTML code. This won’t work as expected and leads to
invalid content.

36

3.3.3.4. Video

The video part can be applied to any block level HTML element. This part can be used to display
information and thumbnails of external videos. It can also be used to embed external videos.
Within the element, various elements can be used as placeholders:

• Each <iframe> element is used to embed an external video player.

• Each element with a data-bsi-video-thumbnail attribute is used to display the video
thumbnail.

• Each HTML element with the data-bsi-video-title attribute is used to display the video title.

• Each HTML element with the data-bsi-video-description is used to display the video
description.

• Each <a> element with the data-bsi-video-link is used to place a link to the external video. The
text of the hyperlink will not be touched, only the href attribute will be filled.

IMPORTANT
Fetching the video’s title and description may requires an active API key for
the appropriate provider.

IMPORTANT
Boolean attributes like data-bsi-video-title require an empty value ="" or
sample value like ="true".

The following external video providers are supported:

YouTube

Without a configured API key, only the thumbnails are automatically picked. More information
on obtaining a YouTube API key: https://developers.google.com/youtube/v3/getting-started

Be aware that there are two kinds of URLs involved: One is the link to the video platform itself for
the href attribute on the <a> tag and there is the embedded URL for the <iframe> player. In the case
of YouTube https://www.youtube.com/watch?v=YpnFs4aBLQA is the link to the video platform. The
corresponding embedded URL would be https://www.youtube.com/embed/YpnFs4aBLQA. If you
want to provide sample content for your element you may have to fill both URLs in the right tag.
The following listing illustrates the use of sample content for a simple video element:

Listing 38. Example of a simple video element.

<div class="element video" data-bsi-element="video-simple">
 <div class="responsive-video" data-bsi-element-part="video" data-bsi-video-data-
link="https://www.youtube.com/watch?v=YpnFs4aBLQA"> ①
 <iframe width="1120" height="630" frameborder="0"
src="https://www.youtube.com/embed/YpnFs4aBLQA" allow="autoplay; encrypted-media"
webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe> ②
 </div>
</div>

① The link to the video platform is placed inside the data-bsi-video-data-link attribute.

② The embed video URL is placed inside the src attribute of the <iframe> tag.

37

https://developers.google.com/youtube/v3/getting-started
https://www.youtube.com/watch?v=YpnFs4aBLQA
https://www.youtube.com/embed/YpnFs4aBLQA

This results in the following content element:

Figure 6. Simple video element in action.

A more complex video element would be the following:

Listing 39. Example of a complex video element.

<div class="element video" data-bsi-element="video-thumbnail">
 <div class="video-thumbnail" data-bsi-element-part="video" data-bsi-video-data-
link="https://www.youtube.com/watch?v=YpnFs4aBLQA"> ①
 <p>
 <a href="https://www.youtube.com/watch?v=YpnFs4aBLQA" data-bsi-video-
link="" target="_blank"> ②
 <img src="https://i.ytimg.com/vi/YpnFs4aBLQA/maxresdefault.jpg" alt=""
data-bsi-video-thumbnail=""/> ③

 </p>
 <h3 data-bsi-video-title="">BSI Tech Lovers</h3> ④
 <p data-bsi-video-description="">Für mehr WOW-Momente mit BSI. Monika
Freiburghaus, Ralf Muri, Thomas Lindauer und Urs Frick zeigen Einblicke in ihre
persönlichen WOW-Momente.</p> ⑤
 </div>
</div>

① The link to the video platform is placed inside the data-bsi-video-data-link attribute.

② The link to the video platform is also placed inside the href attribute.

③ The placeholder image can also be part of the design, it is not mandatory to provide the URL to
the real image here.

④ The content of the first tag marked with data-bsi-video-title will be used as placeholder for the
title.

38

⑤ The content of the first tag marked with data-bsi-video-description will be used as placeholder
for the video description.

This results in the following content element:

Figure 7. Complex video element in action.

The video part is quite powerful and can be used in various ways:

• Enrich your landing page or website with embedded videos.

• Use video thumbnails in your content.

• Send emails with link, thumbnail, title and description of an external video.

3.3.3.5. Image

The image element part can only be placed inside of a or <a> tag. The source is inserted in the
src attribute.

Listing 40. Example of an image element

<div data-bsi-element="image-simple">

</div>

It is not possible to omit the image of an image part. Therefore it is mandatory to specify an image in
the content editor. Otherwise a validation error will occur.

39

srcset

By specifying the srcset attribute, the images are also scaled accordingly. If a srcset attribute is
present, the src attribute is set to the image at its highest resolution (according to the defined
srcset). If there is no srcset attribute, the selected image is not scaled and is placed directly as src.
For images with dynamic sources (the image is set through the story), the definition of the srcset is
ignored. If you set an image in the content editor, make sure it is of decent size. After saving the
content, the image is scaled to the sizes specified in the srcset attribute and stored on the CX
resource server. Depending on the resolution of device that is requesting the landing page/website,
a different resolution of the image is loaded.

TIP We highly recommend to set the srcset attribute.

Listing 41. Example of a image element that scales to the sizes specified in srcset

<div data-bsi-element="image-simple">
 <img src="example-800w.jpg" srcset="example-480w.jpg 480w, example-800w.jpg 800w"
alt="Example image" data-bsi-element-part="image" />
</div>

The attribute data-bsi-hide-link controls whether the field URL/internet address and the checkbox
Open in new window is visible and editable in the content editor. A design developer may still wrap
the image inside an <a> tag in the content element, but the user cannot change the link.

IMPORTANT The attribute data-bsi-hide-link is available from CX 1.3.40 onward

Providing an image through the story

Dynamic image sources can be specified with angle brackets, e.g. <my-dynamic-image>. The image
URL will then be provided by the story. Please note that in this case the srcset attribute will be
ignored. Thus, dynamic image sources are not scaled.

3.3.3.6. background-image

An arbitrary element which permits the use of a CSS background-image. It places the CSS attribute
background-image. The image selection is available as the editor just like with the image part.

Listing 42. Example usage of the background-image part.

<div class="element scene" data-bsi-element="scene">
 <div data-bsi-element-part="background-image" style="background-image:
url('example.jpg')"></div>
</div>

3.3.3.7. table

A <div> oder <td> element with a table element as a direct child element. The table content is filled
according to the editor (including colgroup). Colspan is not supported. On even or odd rows or
columns, the CSS class even or odd is placed. The <th> tag is used for header columns, if specified.

40

This part does not support <thead> and <tbody> tags.

TIP It is possible to use an iterator to generate dynamic tables.

Listing 43. Example usage of the table part.

<div class="element table" data-bsi-element="simple-table" data-bsi-element-
part="table">
 <table>
 <tr>
 <th>Firstname</th>
 <th>Lastname</th>
 <th>Age</th>
 </tr>
 <tr>
 <td>John</td>
 <td>Doe</td>
 <td>42</td>
 </tr>
 </table>
</div>

3.3.3.8. iterator

An arbitrary element. The attribute data-bsi-iterator can be defined on this element. The attribute
data-bsi-iterator-item must be defined on the element or on one of the included elements. This
defines the element to be duplicated. If data-bsi-iterator is defined and the iterator does not
provide any data, the entire element is removed. Otherwise, only the element to be duplicated is
marked with data-bsi-iterator-item.

A text field is used as the editor. The name of the iterator can be placed in this text field.

Listing 44. Example usage of the iterator part.

<div class="element iterator" data-bsi-element-part="iterator" data-bsi-
iterator="Customer">
 <div class="customer" data-bsi-iterator-item="Customer">
 <dl>
 <dt>Name</dt>
 <dd>{Customer.name}</dd>
 <dt>Address</dt>
 <dd>{Customer.address}</dd>
 </dl>
 </div>
</div>

3.3.3.9. news-snippets

An arbitrary element. Displays a news item. Within the element, elements with the data-bsi-

41

property attribute can be defined. This attribute may have the following values: image, title,
headline, or text. The content of these elements is then replaced accordingly with the value of the
selected news item. In that context, elements from property title, headline, and text are
mandatory.

If a link in CX is configured into a news snippet, title and image are automatically supplemented
with a link. When generating the news list, the following CSS classes are automatically set on a
news snippet to permit better styling of the individual elements:

news-nth-X the position in the list. E.g., news-nth-9

odd odd position in the list

even even position in the list

first first news snippet

last last news snippet

Listing 45. Example usage of the news-snippets part.

<div class="element news" data-bsi-element="news-snippets" data-bsi-element-
part="news-snippets">
 <div class="news-image element">

 </div>
 <div class="news-text element">
 <h2 class="ns-title" data-bsi-property="title">Breaking News</h2>
 <p class="ns-headline" data-bsi-property="headline">Lorem ipsum dolor sit
amet</p>
 <p class="ns-text" data-bsi-property="text">Ea vis odio voluptua, pri ei facer
denique.</p>
 </div>
</div>

3.3.3.10. form

A <form> element. The element must contain a submit button and may also contain a reset button.
Those buttons must be <input> elements. In the form configuration, the reset button can be hidden
or displayed. In that case, the DOM attribute disabled is set on the input element.

The form element must contain an element with the data-bsi-form-validation attribute, and this
attribute must contain an element with the data-bsi-form-validation-item attribute.

Within the element with data-bsi-form-validation, the element with data-bsi-form-validation-item
is duplicated for each error in the server-side form validation, and the validation message is
inserted as the content of the validation item element.

IMPORTANT
Boolean attributes like data-bsi-form-validation require an empty value =""
or sample value like ="true".

42

In addition to the display in the above-described element, a data-bsi-form-validation-message
attribute is set for each defective form field. It contains the validation error for the respective field.
The attribute can be used to style the field with CSS if there is an error (CSS selector checks for the
presence of the attribute) or to display the error message with CSS and/or JavaScript in the
respective field.

The following form fields can be marked as mandatory fields in the content editor. If this is done,
the required attribute is set in the relevant HTML element. Thus, the mandatory elements are styled
using the respective CSS selectors.

To exclude a certain form from CX you set the data-bsi-form-ignore attribute on the form tag. Any
form with this marker will be left untouched by CX.

Listing 46. Example usage of the form part.

<div class="element form" data-bsi-element="slim-form">
 <form class="form form-wrapper" data-bsi-element-part="form" id="form">
 <ul class="form-validation" data-bsi-form-validation="">
 <li class="form-validation-item" data-bsi-form-validation-item="">

 <div class="form-content" data-bsi-dropzone="form-content" data-bsi-dropzone-
allowed-elements="form-field">
 </div>
 <div class="form-button-bar">
 <input type="submit" class="form-button send" value="Senden" />
 <input type="reset" class="form-button reset" value="Zurücksetzen" />
 </div>
 </form>
</div>

3.3.3.11. form-field

A <div> element. Contains a <label> and an <input> element. In the configuration, the label, initial
value, mandatory field, and input type can be defined. The following input types are supported:

text For a simple text field.

email Input field, that accepts a valid e-mail address.

tel Input field, that accepts a phone number.

password A password input field, that shows * instead of the real characters.

number An input field, that accepts only numbers.

range An input field, that shows a numeric range slider.

date An input field, that can be used to select a certain date.

datetime-local Input field, that accepts a date and a specific time.

43

time Input field, that accepts a time.

file Input field, that can be used to upload a file.

To fixate the form field type, the data-bsi-form-field-fixed-type attribute can be used on the
element. Doing so allows the setup of a customized date field, for example. The type of the form
field is then set and cannot be changed in the content editor.

The attribute data-bsi-hide-required controls whether the mandatory checkbox is visible and
editable in the content editor. If the checkbox is not shown, the original state of the required
attribute is preserved, as defined by the content element.

IMPORTANT The attribute data-bsi-hide-required is available from CX 1.3.40 onward

WARNING
Be aware, that not all browsers support all types of input fields. Some browsers
require a polyfill to handle certain types of form fields. It is up to the developer
to use polyfills where this is required.

Listing 47. Example usage of the form-field part.

<div class="form-field" data-bsi-element="date-field" data-bsi-element-part="form-
field" data-bsi-form-field-fixed-type="">
 <label for="date" class="label">Date</label>
 <input id="date" class="input" type="date" value="2009-11-13" required="" />
</div>

IMPORTANT
Boolean attributes like data-bsi-form-field-fixed-type require an empty
value ="" or sample value like ="true".

3.3.3.12. form-checkbox

A <div> element. Contains a <label> and an <input> element with the checkbox type.

The attribute data-bsi-hide-required controls whether the mandatory checkbox is visible and
editable in the content editor. If the checkbox is not shown, the original state of the required
attribute is preserved, as defined by the content element.

IMPORTANT The attribute data-bsi-hide-required is available from CX 1.3.40 onward

Listing 48. Example usage of the form-checkbox part.

<div data-bsi-element="form-checkbox" data-bsi-element-part="form-checkbox"
class="element checkbox">
 <input type="checkbox" id="checkbox1" />
 <label for="checkbox1">Checkbox 1</label>
</div>

44

3.3.3.13. form-textarea

A <div> element. Contains a <label> and a <textarea> element.

The attribute data-bsi-hide-required controls whether the mandatory checkbox is visible and
editable in the content editor. If the checkbox is not shown, the original state of the required
attribute is preserved, as defined by the content element.

IMPORTANT The attribute data-bsi-hide-required is available from CX 1.3.40 onward

Listing 49. Example usage of the form-textarea part.

<div data-bsi-element="form-textarea" data-bsi-element-part="form-textarea"
class="form-field form-element">
 <label for="textarea" class="label">Description</label>
 <textarea id="textarea" rows="5" cols="20" class="textarea" maxlength="500">Lorem
ipsum</textarea>
</div>

3.3.3.14. form-select

A <div> element. Contains a <label> and a <select> element with the elements option. The pre-
allocation of the element can be controlled with the data-bsi-value and data-bsi-value-list
attributes. The data-bsi-value attribute contains the preal-location, and the values available for
selection are defined in the data-bsi-value-list attribute. A line break (\n or \r\n) separates each of
those.

To fixate the values that are available for selection, the data-bsi-form-select-fixed-value-list
attribute can be set on the element. Then, the list of values cannot be changed in the content editor.
Only the preselection can be changed.

The attribute data-bsi-hide-required controls whether the mandatory checkbox is visible and
editable in the content editor. If the checkbox is not shown, the original state of the required
attribute is preserved, as defined by the content element.

IMPORTANT The attribute data-bsi-hide-required is available from CX 1.3.40 onward

WARNING The multiple attribute is not supported.

Listing 50. Example usage of the form-select part.

<div data-bsi-element="form-select" data-bsi-element-part="form-select" class="form-
select form-element" data-bsi-value-list="Yes
No
Unsure" data-bsi-value="No">
 <label for="select" class="label">Decision</label>
 <div class="select-wrapper">
 <select size="1" id="select">
 <option>Yes</option>

45

 <option selected="">No</option>
 <option>Unsure</option>
 </select>
 <div class="dropdown" role="presentation">a</div>
 </div>
</div>

3.3.3.15. form-radio

A <div> element. Contains a <label> and a <div> element as a radio group. The radio group is
marked with the data-bsi-radio-group attribute. The radio group contains radio items. These are
identified with the data-bsi-radio-item attribute and contain a <label> and an <input> element with
the radio type. The preselection of this element can be controlled with the data-bsi-value and data-
bsi-value-list attributes. Same as the form-select part. The same applies to the data-bsi-form-
select-fixed-value-list attribute.

The attribute data-bsi-hide-required controls whether the mandatory checkbox is visible and
editable in the content editor. If the checkbox is not shown, the original state of the required
attribute is preserved, as defined by the content element.

IMPORTANT The attribute data-bsi-hide-required is available from CX 1.3.40 onward

Listing 51. Example usage of the form-radio part.

<div data-bsi-element="form-radio" data-bsi-element-part="form-radio" class="form-
radio form-element">
 <label class="label">To be or not to be?</label>
 <div data-bsi-radio-group=""> ①
 <div class="form-radio-item" data-bsi-radio-item=""> ②
 <input type="radio" id="radio1" />
 <label for="radio1">Radio-Button 1</label>
 </div>
 </div>
</div>

① The data-bsi-radio-group element contains the prototype element.

② The data-bsi-radio-item element is the prototype element.

WARNING
Be aware, that data-bsi-radio-item must be right inside data-bsi-radio-group.
Any intermediate element will be removed.

IMPORTANT
Boolean attributes like data-bsi-radio-item require an empty value ="" or
sample value like ="true".

3.3.3.16. link

The part is defined on the <a> element. As an option, the link content can be set with the data-bsi-
link-fixed-inner-html attribute. If this attribute is present, only the href attribute of the link can be

46

edited in the content editor. If the link text is to be placed in a tag within the hyperlink (e.g. in a
span next to an tag), the optional data-bsi-link-text-part attribute can be set on the tag.

IMPORTANT
Boolean attributes like data-bsi-link-fixed-inner-html could require an
empty value ="" or sample value like ="true".

Listing 52. Example usage of the link part.

<div data-bsi-element="cta" class="element cta">
 More
</div>

Listing 53. Example usage of the link part with data-bsi-link-fixed-inner-html.

<div data-bsi-element="cta" class="element cta">
 <a href="[dynamic_link]" data-bsi-element-part="link" data-bsi-link-fixed-inner-
html>

 <p> Some static content </p>
 <p data-bsi-element-part="formatted-text"> Add your text here! </p>

</div>

Listing 54. Example usage of the link part with data-bsi-link-text-part.

<div data-bsi-element="cta">
 <a data-bsi-element-part="link" href="#" role="button">
 <i class="icon icon-028-arrow-back"></i>
 The link text is

</div>

3.3.3.17. social-follow

A <div> element, contains <div> elements with a data-bsi-social-follow attribute. These attributes
contain the value of the respective social media service, such as "Facebook", "Twitter", "Pinterest",
etc.

The elements with data-bsi-social-follow must have the social-media-item class. This class is used
to manage the visibility of each individual social media channel in the editor.

The elements with data-bsi-social-follow must also contain an <a> element. The link href can be
preselected with a URL or with CX links in square brackets (e.g., [Facebook]).

The <a> element, in turn, can contain additional elements.

47

Listing 55. Example usage of the social-follow part.

<div data-bsi-element="social-follow" data-bsi-element-part="social-follow">
 <div data-bsi-social-follow="Facebook" class="social-media-item">

 </div>
 <div data-bsi-social-follow="Twitter" class="social-media-item">

 </div>
</div>

3.3.3.18. social-share

A <div> element, contains <div> elements with data-bsi-social-share. These attributes contain the
value of the respective social media service, such as Facebook, Twitter, Pinterest, or even e-mail.

The elements with data-bsi-social-share must have the social-media-item class. This class is used
to control the visibility of each individual social media channel in the editor.

The elements with data-bsi-social-share must also contain an <a> element. The link href can be
preselected with a URL or with Studio links in square brackets (e.g., [Facebook]).

To share it via e-mail, the content of the href is then a
mailto:?subject=(subject.with.title)&body=(description.with.url)

The <a> element, in turn, can contain additional elements.

The URL supports a list of wildcards that are specific to the social share part. When they are issued,
all wildcards are automatically URL-encoded. These wildcards cannot be selected in the step
configuration in Studio. The following wildcards exist:

url The URL/internet address of the current Studio webpage or the user-
defined URL.

description The description text of the current Studio webpage or the user-
defined description text (a maximum of 300 characters).

description.short Same as description, but a maximum of 140 characters; all additional
characters are truncated.

description.with.url Same as description; in addition, the url is added to the end of the
description text.

title The title of the current Studio webpage or the user-defined title (a
maximum of 100 characters).

48

title.with.url Same as title, and, in addition, the url is added to the end of the
description text.

subject.with.title Same as title, and, in addition, a text "Share web-site:" is added to the
beginning of the title; is used as the subject in an e-mail.

preview.image.url The URL/internet address for the preview image of the webpage
according to the configuration in the content editor.

<div data-bsi-element="social-share" data-bsi-element-part="social-share">
 <div class="social-media-info">Share this page</div>
 <div data-bsi-social-share="E-Mail" class="sm-email social-media-item share">
 <a href=
"mailto:?subject=(subject.with.title)&body=(description.with.url)">
 </div>
 <div data-bsi-social-share="Facebook" class="sm-facebook social-media-item share">
 <a href="https://www.facebook.com/sharer/sharer.php?u=(url)" target=
"_blank">
 </div>
 <div data-bsi-social-share="LinkedIn" class="sm-linkedin social-media-item share">
 <a
href="https://www.linkedin.com/shareArticle?mini=true&url=(url)&summary=(title)&source
=FancyUnicorns" target="_blank">
 </div>
 <div data-bsi-social-share="Pinterest" class="sm-pinterest social-media-item
share">
 <a
href="http://pinterest.com/pin/create/button/?url=(url)&description=(title)&media=(pre
view.image.url)" target="_blank">
 </div>
 <div data-bsi-social-share="Twitter" class="sm-twitter social-media-item share">
 <a href="https://twitter.com/intent/tweet?url=(url)&text=(description.short)"
target="_blank">
 </div>
 <div data-bsi-social-share="WhatsApp" class="sm-whatsapp social-media-item share">

 </div>
 <div data-bsi-social-share="Xing" class="sm-xing social-media-item share">

 </div>
</div>

3.3.3.19. url-provider

IMPORTANT CX 22.0

The URL provider content element part can be used to load dynamic data inside a story. Inside the
content editor, the URL provider part only offers a text field to define its name. When using the
content inside your story, each URL provider part will produce a separate outlet. This outlets can be

49

connected to any URL provider (e.g. the Charts Step).

Listing 56. Example usage of the URL provider part.

<div data-bsi-element="pie-chart" data-bsi-element-part="url-provider" class="mb-4
chart-js">
 <img src="./pie-chart-placeholder.png" alt="" class="w-100" data-bsi-element-
part="image"/>
</div>

When a story renders the content, the HTML tag with the url-provider part will have a data-bsi-url
attribute. This attribute will contain an absolute URL to the CX server, where the data can be
requested.

Using the Chart URL Provider

We created a small Java Script library to use the chart URL provider in a template. Take a look at
the repository on GitHub for more information. To integrate the library, install it with NPM:

npm install --save github:bsi-software/bsi-cx-chart#semver:^1.1.2

You also must install a chart library of your choice, currently there are only bindings for Chart.js.
You can install it using npm:

npm install --save chart.js

Now, create your content element:

<div data-bsi-element="pie-chart" data-bsi-element-part="url-provider" class="chart-
js">
 <img src="./pie-chart-placeholder.png" alt="" class="w-100" data-bsi-element-
part="image"/> ①
</div>

① This will be replaced when the library is initialized, and the data from the URL provider is
available. So it’s recommended to put some placeholders here.

To use the library, you must initialize it:

import 'chart.js/auto'; ①

import {ChartConfig, ChartUrlProvider} from '@bsi-cx/chart';
import ChartConfigColor from '@bsi-cx/chart/src/config/color';

/**
 * @type {{border: ChartConfigColor, background: ChartConfigColor}[]}
 */

50

https://github.com/bsi-software/bsi-cx-chart/tree/releases/22.0
https://www.chartjs.org/

const colors = [
 ChartConfigColor.of('#ff6384ff', '#ff638466'),
 ChartConfigColor.of('#36a2ebff', '#36a2eb66'),
 ChartConfigColor.of('#cc65feff', '#cc65fe66'),
 ChartConfigColor.of('#ffce56ff', '#ffce5666')
]; ②

const config = new ChartConfig()
 .withColors(...colors);

document.querySelectorAll('.chart-js') ③
 .map(element => new ChartUrlProvider(element, config))
 .forEach(chart => chart.render());

① Initialize the Chart.js library.

② Optional, can be used to define your own set of colors.

③ Select all URL provider parts you want to initialize with the ChartUrlProvider.

3.3.4. Template Parts

IMPORTANT CX 25.1

It is also possible to build content elements based on the Handlebars templating engine. For design
developers this means that they have the choice of either building content elements using the
HTML Element Parts described in the last chapter, or the new Handlebars Template Parts. Crucially
it is not allowed to mix both in one content element.

Template Parts work in quite a different way from Element Parts: All they do is supply a part of the
content element editor, as the name suggests. Each Template Part has a defined set of variables that
it provides to render the content elements Handlebars template. A full example might look
something like this:

Listing 57. The content element as defined in design.json.

{
 "elementId": "medium-quote-hbs",
 "type": "template-element",
 "file": "content-elements/content/medium-quote-hbs.hbs",
 "contextFile": "content-elements/content/medium-quote-hbs.json",
 "icon": "heading",
 "label": "Medium Quote",
 "templateParts": [
 {
 "partId": "multiline-plain-text",
 "partContextId": "text", ①
 "label": "Text"
 },
 {
 "partId": "checkbox",

51

 "partContextId": "italic", ②
 "label": "Text Kursiv anzeigen"
 }
]
}

The content element consists of two Template Parts, crucially they have to be explicitly mentioned
in the design.json, since - as opposed to the Element Parts they do not have an explicit declaration
in the HTML DOM. The first Template Part lets the user define a multiline text without any markup,
the second exposes a boolean value, that in this example is used to set the text to italic, if the user
checks the checkbox. This results in the following content element editor:

Figure 8. The combined Template Parts build the complete content element editor.

The handlebars template and the default values are as follows:

Listing 58. Handlebars template of the content element.

<div class="content-element-wrap" data-bsi-element="medium-quote-hbs">
 <div class="paragraph-light" {{#if italic.value}}style="font-style: italic"{{/if
}}>{{text.value}}</div> ③
</div>

Listing 59. The corresponding default context variables, supplied in the context file.

{
 "text": { ①
 "value": "Consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut
labore et dolore magna aliquyam erat, sed diam voluptua." ②
 },

52

 "italic": { ①
 "value": false ②
 }
}

① The partContextId defines the name of the instance of the Template Part since there can be more
than one of the same type.

② Each Template Part supplies an object containing specified context variables that can be used to
render the template.

③ The variable name is prefixed with the partContextId when it is referred to in the Handlebars
template.

3.3.4.1. plain-text

This template part supplies a text input field, into which the user can input a single line of plain
text.

Editor

Figure 9. Template part user interface.

Variables

• value: The text value from the editor.

Configuration

This template part provides no configuration options.

3.3.4.2. multiline-plain-text

This template part supplies a single multiline input field, into which the user can input plain text.

Editor

Figure 10. Template part user interface.

53

Variables

• value: The text value from the editor.

Configuration

This template part provides no configuration options.

3.3.4.3. formatted-text

This template part closely mirrors the corresponding formatted-text element part. It provides a
configurable HTML WYSIWYG editor.

TIP
Since this part provides a variable with HTML code, you should use the 'triple-stash'
syntax of Handlebars to output the variable: {{{textPart.html}}}. Otherwise the HTML
code would be escaped when the template is being rendered.

Editor

Figure 11. Template part user interface.

As with the corresponding element part, the toolbar of the editor can be configured using a
htmlEditorConfig. The picture shows the current default editor.

Variables

• html: HTML code generated by the WYSIWYG editor

• languageTag: Language tag as a string, that can be used with the lang HTML attribute to hint
the language to e.g. screen readers

Configuration

The template part allows the HTML editor to be configured. The structure is as follows:

• htmlEditorConfigId: The ID of the editor configuration from the design.json that should be
applied to this template part.

54

3.3.4.4. link

An template part that provides URL and accessibility information for a link.

Editor

Figure 12. Template part user interface.

Variables

• url: The URL for the link.

• description: Accessibility information that describes the link for screen readers. This can be
added to the aria-label attribute.

• openInNewWindow: Boolean value to describe where the link should be opened, can be used
in conjunction with target="_blank".

Configuration

This template part provides no configuration options.

3.3.4.5. image

The image template part supplies all values needed to render an image in the content, including
accessibility information.

Editor

55

Figure 13. Template part user interface.

The screenshot shows two possible configurations of the image template part editor:

above

Alternative text is set to mandatory, the additional accessibility fields are visible.

below

Alternative text is not mandatory and all accessibility fields are invisible.

The second configuration should only be used in very specific circumstances, e.g. multiple sources
in a HTML <picture> tag.

Variables

• altText: Accessibility-feature, alternative text that is also shown if the browser cannot show the
picture.

• srcUrl: The URL that points to the selected image.

• placeholderSrcUrl: The URL pointing to a placeholder image (used for the content editor).

• srcset: Srcset-String. Only relevant if sizes have been defined in the design.

• decorative: Boolean value that can be used to set the accessibility option aria-hidden="true",
which results in screenreaders ignoring the image entirely.

56

Configuration

The template part can be configured with the following values:

• altTextMandatory: Makes the alternative text field in the UI mandatory.

• srcsetSizes: List of size definitions, as used in the srcset HTML attribute, see example below.

• hideAccessibilityFields: Hides all accessibility fields in the editor UI.

Example:

"config": {
 "hideAccessibilityFields": true,
 "altTextMandatory": false,
 "srcsetSizes": [
 "400w",
 "800w",
 "1200w"
]
}

3.3.4.6. checkbox

The checkbox template part is mainly used for control-structures in the Handlebars-template. It
supplies a simple checkbox element and a boolean value that can be used e.g. for {{#if}}-blocks
within the content element.

Editor

Figure 14. Template part user interface.

Variables

• value: Boolean value representing the state of the checkbox. Cannot be empty.

Configuration

This template part provides no configuration options.

3.3.4.7. option

The option template part is mainly used for control-structures in the Handlebars-template. It allows
to define a list of key/value options in the design and provides the key of the option selected by the
user in the content editor.

Since the {{#if}} blocks in Handlebars do not support logical expressions, the variable from the
option part is usually used with the Handlebars helpers eq and neq. For example such as:

57

{{#eq imageCaptionOption.option "yes"}}
 <div class="paragraph-light news-image-description">{{image.altText}}</div>
{{/eq}}

The negation works analogous, just using {{#neq a b}} instead of the {{#eq a b}} shown in the
example above.

Editor

Figure 15. Template part user interface.

Variables

• value: The string-value of the selected option.

Configuration

The option template part needs one or more configured options that each consists of a value and a
text that is displayed to the user in the editor user interface. In the Handlebars template, the value
of the selected option is applied to the 'value' variable.

The template part configuration is structured as follows:

• options: List of options consisting of:

◦ text: Display text shown to the user in the content element editor

◦ value: The value that is exposed in the variable context of the template part

Example:

"config": {
 "options": [
 {
 "text": "Ja",
 "value": "yes"
 },
 {
 "text": "Nein",
 "value": "no"
 }
]
}

58

3.3.4.8. dynamic-value-list

This Handlebars template part offers functionality for the integration of BSI Suite value lists into
any HTML form, providing REST endpoints for the purpose of retrieving values from such lists.

Editor

Figure 16. Template part user interface.

Variables

• Value list: A reference to a BSI Suite value list. Mandatory.

• Initial value: Optional initial value for the HTML form field. Only values belonging to the
referenced Value list are available. Only editable if Value list is set.

NOTE
It is also possible to define an initial value within the configuration of a story, which
supersedes the initial value of the content.

Backend processing and HTML rendering

The BSI backend processes dynamic value lists in the following manner:

1. The BSI Suite value list is defined in the content using the content editor, and this value is stored
in the CX database.

2. During the rendering of the HTML, the ID of the value list is utilized to create a REST endpoint,
and the URL of this endpoint is transmitted to and made available in the client’s DOM.

3. The endpoint is invoked by the client to retrieve all values of the value list.

4. The values are processed and transmitted to the CX backend upon form submission, and these
values can be utilized in CX stories for further processing. The values automatically possess the
correct BSI data model type.

Involved BSI HTML Attributes

• data-bsi-entity-id: Holds a BSI datamodel entity ID (i.e., an ID referencing the BSI Suite value
list). Only used at configuration time, not sent to clients.

• data-bsi-entity-key-value: Holds an entity key belonging to the element’s data-bsi-entity-id.
This value is used to set the form field’s initial value. Only used at configuration time, not sent to
clients. The value of this attribute is symmetrically encrypted and set into the HTML element’s
value attribute before the HTML is sent to any clients.

59

• data-bsi-entity-key-display-text: Human readable label of the key stored in data-bsi-entity-
key-value. This attribute is preserved and sent to clients.

• data-bsi-rest-resource: Target endpoint to lookup values belonging to the element’s data-bsi-
entity-id. This attribute is preserved and sent to clients.

Design integration

The integration process consists of two stages. Firstly, the BSI data model entity IDs and keys are set
in the content during configuration time. Secondly, these values are retrieved when the HTML form
is opened via REST during runtime.

Configuration time

The Handlebars template part’s editor persists the following context variables:

• dataModelValue: A nested JSON holding the BSI datamodel type and (if set) initial value key.

• displayText: The initial value key’s human-readable label. May be empty.

Listing 60. The element’s context structure.

{
 "dataModelValue": {
 "type": "entity:1234",
 "value": "entity:1234:key:9876"
 },
 "displayText": "I belong to key 9876"
}

To correctly encrypt and map BSI datamodel values, the CX backend expects:

• The HTML element tagged with dynamic-value-list also has to reference and set the BSI HTML
attribute data-bsi-entity-id. data-bsi-entity-id is used to create the URL for the lookup-call.

• The HTML input on the form has to reference the BSI HTML attribute data-bsi-entity-key-value.
This enables default values.

Listing 61. The element’s BSI HTML attributes at configuration time.

<div data-bsi-element="dynamic-value-list" data-bsi-entity-
id="{{context.dataModelValue.type}}" >
 <input
 data-bsi-entity-key-value="{{context.dataModelValue.value}}"
 data-bsi-entity-key-display-text="{{context.displayText}}" >
</div>

Runtime

It is the frontend code’s responsibility to retrieve and display a value list’s values.

• The element tagged with dynamic-value-list contains a REST endpoint to retrieve the values of

60

the value list. It is exposed via the BSI HTML attribute data-bsi-rest-resource. The REST call
uses the GET method and returns a JSON containing one attribute called options. This attribute
holds a list of id-text pairs. The id is always encrypted.

• Ensure that the correct encrypted id is sent to the CX backend on a form submit.

• The element marked with the tag "dynamic-value-list" contains a REST endpoint for retrieving
the values of the value list, which is exposed via the BSI HTML attribute "data-bsi-rest-resource".
The REST call utilizes the GET method and returns a JSON object containing a single attribute
named "options", which holds a list of id-text pairs. The id is always encrypted.

• It is essential to ensure that the correct encrypted id is transmitted to the CX backend upon form
submission.

Listing 62. An example HTML element sent to a customer opening a CX landing page.

<div data-bsi-rest-resource="http://your-client.bsi/inbound/default/r/bsi-code-rest-
resource?entityId=WcaYlNlwe6VnI72" >
 <input
 value="kOi4pUb17YbVcvVlaU9-kiQW993"
 data-bsi-entity-key-display-text="I belong to the encrypted key
kOi4pUb17YbVcvVlaU9-kiQW993" >
</div>

Listing 63. An example response when calling the URL provided via data-bsi-rest-resource.

{
 "options": [
 {
 "id": "kOi4pUb17YbVcvVlaU9-kiQW993",
 "text": "label 1"
 },
 {
 "id": "mRt7xQe42NcBzxTpoL3-zvER581",
 "text": "label 2"
 },
 {
 "id": "fLn2vHd89JmTqyWkdA6-wuTY764",
 "text": "label 3"
 }
]
}

REST parameters

The REST endpoint exposed via data-bsi-rest-resource accepts the following query parameters:

• entityId: The encrypted value list type. Mandatory. This parameter is provided by the CX
backend and already set. There is no need to adapt it in the frontend.

• q: Query parameter. Optional. If set, it’s value is used to perform a case-insensitive prefix search

61

on the lookup result’s texts. Only matching results are sent to the client.

• lang: Requested language parameter. Optional. If set, the value is used to parse a JAVA locale.
The locale is used to perform the lookup and returns the result in the corresponding language.
It is recommended to set this attribute to the DOM’s language attribute (which is normally set
via CX’s content engine). If no value is provided, the request’s language (i.e., the client’s browser
language) is used. The last fallback is the CX backend’s system language. Example values: de-DE,
de-CH, de, en, en-US, fr, …

Listing 64. Example URL. The design has to handle q and lang parameters.

http://your-client.bsi/inbound/default/r/bsi-code-rest-
resource?entityId=WcaYlNlwe6VnI72&q=searchVal&lang=de

The REST endpoint made available via data-bsi-rest-resource supports the following query
parameters:

• entityId: The encrypted value list type. Mandatory. This parameter is provided by the CX
backend and is already set, therefore no adjustments are necessary in the frontend.

• q: Query parameter. Optional. If specified, its value is utilized to perform a case-insensitive
prefix search on the lookup result’s texts. Only matching results are transmitted to the client.

• lang: Requested language parameter. Optional. If specified, the value is used to parse a JAVA
locale. The locale is then used to perform the lookup and return the result in the corresponding
language. It is recommended to set this attribute to the DOM’s language attribute, which is
typically set via CX’s content engine. If no value is provided, the request’s language (i.e., the
client’s browser language) is used. The last fallback is the CX backend’s system language.
Example values include de-DE, de-CH, de, en, en-US, fr, etc.

How to create a content element using the value list part

The element is based on the new Handlebars integration in BSI CX designs. To work properly with
the CX form engine, your element should also contain two additional template element parts:

• id: A plain-text Handlebars template part to uniquely identify the form field in a form. Ensure
that the HTML form field’s ID attribute is set to this value. Mandatory.

• name: The form field’s label. Mandatory.

Minimal example implementation

Listing 65. The example’s context .json. The content editor sets the datamodel values.

{
 "id": {
 "value": "dynamic-dropdown-1"
 },
 "name": {
 "value": "Field"
 },
 "entityTypeAndInitialValue": {

62

 "dataModelValue": {
 "type": "",
 "value": ""
 },
 "displayText": ""
 }
}

Listing 66. The examples .hbs file. The content editor sets the datamodel values.

<div data-bsi-element="dynamic-value-list" data-bsi-entity-
id="{{entityTypeAndInitialValue.dataModelValue.type}}" >
 <label for="{{id.value}}">{{name.value}}</label>
 <input id="{{id.value}}" name="{{id.value}}"
 value="{{entityTypeAndInitialValue.displayText}}"
 data-bsi-entity-key-value="{{entityTypeAndInitialValue.dataModelValue.value}}"
 data-bsi-entity-key-display-text="{{entityTypeAndInitialValue.displayText}}" >
</div>

Listing 67. The element’s entry in the www-design.json file. Don’t forget to include the element in the
respective dropzones.

{
 "contentElements": [
 {
 "elementId": "example-dynamic-value-list",
 "type": "template-element",
 "file": "path/to/my-example.hbs",
 "contextFile": "path/to/my-example.json",
 "label": "Dynamic select",
 "templateParts": [
 {
 "partId": "plain-text",
 "partContextId": "id",
 "label": "ID"
 },
 {
 "partId": "plain-text",
 "partContextId": "name",
 "label": "Field name"
 },
 {
 "partId": "dynamic-value-list",
 "partContextId": "entityTypeAndInitialValue",
 "label": "Value list"
 }
]
 }
]

63

}

The code snippets above represent the HTML component. A possible method for invoking the REST
endpoint is provided in the snippet below.

Listing 68. Script calling the value list endpoint.

 let $valueListElem = findValueListElement(); // Frontend code's responsibility
 let dataSourceUrl = $valueListElem.attr('data-bsi-rest-resource');
 fetch(dataSourceUrl, {
 method: "GET",
 body: new URLSearchParams({
 q: getQueryParam($valueListElem), // Frontend code's responsibility
 lang: document.documentElement.lang })
 })
 .then(response => {
 // ... Frontend code's responsibility
 });

If you want to implement a dropdown including autocompletion, you may consider JQuery UI as a
starting point.

3.4. Data BSI Attributes
Data BSI attribute are regular DOM element attributes, starting with data-bsi-. In a CX design they
must be used to amend CX specific semantic information to the DOM or to control processing logic
while the DOM is rendered by the CX server.

3.4.1. Control Attributes

3.4.1.1. data-bsi-remove-if

The presence of an HTML element in the generated content can be controlled by using data-bsi-
remove-if. The attribute value can use the following boolean variables:

• draft: The element is only inserted if the content is being edited in the editor.

• live: The element is only inserted if the content is driven by a story.

• authenticated: The element is only inserted if an authenticated visitor exists on the CX HTTP
session (only available in CX websites).

• production: The element is only inserted if the CX server is configured as production system.
This is defined by the config property 'bsi.studio.html.output.environment'.

• test: The element is only inserted if the CX server is configured as test system. This is defined by
the config property 'bsi.studio.html.output.environment'.

The attribute value may have a negate operator (!). Using this operator you can negate the
condition, for instance !authenticated will only be removed in case the visitor is not logged in.

64

https://jqueryui.com/autocomplete/

The attribute value can be a complex expression, see example below.

WARNING
data-bsi-remove-if must not be used for tag elements containing content
elements! Otherwise, those cannot be edited in draft mode.

Examples

A common and recommended use of data-bsi-remove-if="draft" is to suppress executing JavaScript
in the content editor, which may lead to unintended side effects.

Listing 69. Hiding information in draft mode

<script data-bsi-remove-if="draft">
// this script will not mess around with your content while being edited in the
content editor
</script>

A common use case of data-bsi-remove-if="live" mode is to display context information to the user
that should only be present while editing a content.

Listing 70. Hiding information in live mode

<p data-bsi-remove-if="live">This hint will never be shown in any content driven by a
story.</p>

The following example shows a complex expression. If your design includes a script for
analytic/tracking tools, you should make sure the script is never executed on a test system and
never in the editor.

Listing 71. Remove script tag on non-production systems or in draft mode

<script data-bsi-remove-if="!production || draft">
 console.log('run only in production');
</script>

3.4.1.2. data-bsi-hide-[type]-button

data-bsi-hide-edit-button may be used to prevent editing of a content element. The attribute must
be located on the same tag as the data-bsi-element attribute.

Listing 72. Hiding the content element edit button

<div data-bsi-element="..." data-bsi-hide-edit-button="true">...</div>

data-bsi-hide-move-button, data-bsi-hide-copy-button, and data-bsi-hide-remove-button are
working in the same manner, but on dropzone level. They will prevent from moving, copying, or
removing content elements on a dropzone.

65

Listing 73. Prevent moving, copying and removal of content elements

<div data-bsi-dropzone="..." data-bsi-hide-move-button="true" data-bsi-hide-copy-
button="true" data-bsi-hide-remove-button="true">...</div>

3.4.2. Form Processor Attributes

The CX server may implement programmed backend logic to validate and process a specific form in
a CX website. The following attributes control which form processor is called on a form submit. A
CX project that implements its own backend logic may contribute its own form processors.

Set the data-bsi-form-type on a form element to specify which form processor handles the form on
submit. Predefined values are login and change-password. A CX project may define custom values,
which must map to a form processor implementation in the CX backend server.

The data-bsi-show-form-type-field controls whether the CX content editor shows a drop-down
menu to choose a form type in the Form element part. This gives a design author the freedom to
create a generic content element for forms, where the content author can choose to create a
standard form or a form using a form processor via drop-down menu, or to provide a complete
form as a dedicated form element, where the content author cannot change the form type in the
content editor.

Set the data-bsi-form-type attribute on a form field element to mark a field interpreted by a form
processor. For instance a login form requires the form to have two fields, one must define data-bsi-
form-type="user-id" and the other data-bsi-form-type="password" in order to pass the form
processor validation. Each form process may define custom values for this attribute.

See dynamic value list template part for more information data-bsi-entity-id, data-bsi-entity-
key-value, data-bsi-entity-key-display-text and data-bsi-rest-resource.

IMPORTANT
The CX backend guarantees that values defined in data-bsi-entity-key-value
are consistently encrypted prior to transmission to clients.

3.5. Websites

3.5.1. Terms

• Website: The complete website. Contains several pages in different languages.

• Page: A single page within a website. Pages appear in the navigation and have a content in
different languages.

• Include: A content snippet, which is saved locally once and can be referenced at any point
within the website. We differentiate between built-in includes and custom includes. Built-in
includes are content snippets that are included in the design.zip, custom includes are created by
the user based on a content-element.

• Website content type: Website content type items are pages from a website with a specific
type, like a blog or a press release. Other than website pages, website content type items do not

66

affect the structure of the website. Which means, a user can publish for instance a blog page,
without changes to the story that uses the website. Additionally, a website content type has
specific fields, like author or tags. With the "Website Content Type Query" step you can query,
filter and sort website content type items dynamically and use the results as CX iterator or as
REST response in the frontend code of the website.

3.5.2. Concepts

• CX-Placeholders can be used on every page of a website. Their scope generally involves a single
page. For example the placeholder "{Subject}" has to be mapped once for each page that uses it.
A placeholder within an include (e.g. header or footer) only has to be mapped once. An example
for that case would be the display of "{Username}" within the header of a portal-website.
Placeholders can not be used within page-titles or the navigation.

• Custom includes can’t be nested. Technically, that would be possible, but it would need many
checks and visualizations inside the content editor to detect potential infinite recursions and
give feedback to the user through reasonable error messages. For that reason we currently
don’t support that feature.

• An include can only be used once within the same page.

• Multilingualism: All contents and their includes are always created in every active language for
their website. E.g.: The website is configured to be German and Italian. On the creation of a new
page, two pages will be created: one for Italian and one for German (including their dummy-
contents). Within the UI there is no option to create a single page in one specific language only.
If necessary, a CX-condition may be used to hide a page for a specific language inside the
navigation-tree.

3.5.3. Handlebars, Templates

The template engine Handlebars is available to the design developer at runtime. The templates are
parsed server-sided. We’re using the Java-Port by JKnack. In the design, handlebars templates are
important especially for display of the navigation.

Handlebars templates can only be used for parts of a website that can’t be edited by the user. We
set that rule, because templates are parsed server-sided. When the content-editor receives the
HTML source, the templates have already been resolved. If the user would edit a content-element
that contained handlebars syntax, we could only save the rendered content that the user edited.
The original handlebars code would be lost.

For that reason, handlebars should mostly be used for includes that can’t be edited. Examples for
such includes are the master (design.html), the navigation or areas outside a dropzone.

This mechanism can also be used consciously to set multilingual default texts, which are deposited
inside the website.json file. An example for an include for the website header in handlebars code
could look something like this:

<div data-bsi-element="master-header">

 <h1 data-bsi-element-part="plain-text">{{bsi.nls "website.title"}}</h1>

67

https://github.com/jknack/handlebars.java

</div>

On the initial rendering of the page inside the content editor, the text "website.title" is resolved.
As the user saves the page, the initial handlebars code is substituted by the actual text.

Handlebars syntax can also be used in the content-element source files; especially for the NLS-
helper to define multilingual default texts for each content-element. Content-elements with
Handlebars must have the file extension .hbs.

Important: Files that contain Handlebars syntax aren’t valid HTML documents. They shouldn’t be
handled with HTML parsers like JSoup, otherwise the handlebars syntax gets corrupted. Files that
include handlebars code should use the suffix .hbs. IntelliJ supports this syntax with respective
plugins.

3.5.3.1. Handlebars Helpers

Besides the built-in standard helper, BSI CX may also use the following helpers:

bsi.nls

This helper is used to display localized texts or resources inside the design. The syntax looks like
this: {{bsi.nls '[textKey]'}}.

It can also be used inside the content-elements.html file to deliver localized default texts for
different languages.

Text keys are created inside the design.json at the property nls. Text that doesn’t depend on the
locale is defined with the key *. The resolution follows from the most specific locale up to the
default, e.g.:

{
 "nls": {
 "hello.world": {
 "*": "Hello World",
 "de": "Hallo Welt",
 "de-CH": "Sali Wält"
 }
 }
}

bsi.jsonStringify

This helper is used to output a JSON object (or more precise, a DO entity from the BSI customer
suite) into a string representation. Example:

<meta name="x-metadata" content="{{bsi.jsonStringify page.metadata}}">

Depending on the actual value of the 'metadata' object, this could output:

68

<meta name="x-metadata" content="{"value"=123}">

bsi.localeLanguage

This helper is used to output the 'language' part of a Java Locale string. Example, assuming locale is
'de-CH':

<meta name="x-language" content="{{bsi.localeLanguage locale}}">

Output:

<meta name="x-language" content="de">

bsi.localeCountry

This helper is used to output the 'country' part of a Java Locale string. Depending on the actual
value of the locale, this helper may return an empty string. Example, assuming locale is 'de-CH':

<meta name="x-country" content="{{bsi.localeCountry locale}}">

Output:

<meta name="x-country" content="CH">

bsi.nl2br

This helper is used to replace newline characters with an HTML BR tag in a plain text string.
Example, assuming the value of text is 'Hello\nWorld':

<div>{{bsi.nl2br text}}</div>

Output:

<div>Hello
World</div>

eq

Test if two elements are equals. Usage:

Render 'yes' or 'no':

{{#eq a b}}

69

yes
{{else}}
no
{{/eq}}

Render 'true' or 'false':

{{eq a b}}

Render 'y' or 'n':

{{eq a b yes='y' no='n'}}

neq

Test if two elements are NOT equals. Usage:

Render 'yes' or 'no':

{{#neq a b}}
yes
{{else}}
no
{{/neq}}

Render 'true' or 'false':

{{neq a b}}

Render 'y' or 'n':

{{neq a b yes='y' no='n'}}

3.5.3.2. Handlebars Variables

Following variables are available to the design developer on runtime. The variables can be used in
handlebars templates, e.g.: {{navigation.activePage.contentId}}.

Top-Level

• defaultLocale (String): Default locale of the website. Can be used to compare locales, for
instance in an hreflang attribute to render the value x-default when a locale is equals the
defaultLocale. Example: en.

• designBaseUrl (String): base URL of the design on the resource server.

70

• language (String): Current language as it’s used in the lang attribute of the HTML tag, e.g.: de.

• locale (String): Complete locale. The locale is used to resolve text keys through the bsi.nls
helper, e.g. de-CH.

• localizedWebsiteBaseUrl (String) The (root) base URL of the website, including the Locale part.
Example: http://localhost:8085/inbound/default/e/l/my-website/de-CH

• navigation (Navigation object): Contains the hierarchical navigation tree, example follows.

• page (Navigation Item object): The currently active page. This is a shortcut for
navigation.activePage. Note: if the current page is a website content type item which is linked to
a navigation item through the activeWhenWebsiteContentType property, the 'page' property points
to the website content type item, but the 'navigation.activePage' points to the navigation item.
There might be a difference regarding the titles.

• paginationInfo (Pagination Info object): Contains the information for pagination. This object is
only filled if the pagination feature is specified in the design.json file.

• resourceBaseUrl (String): base URL of the resource server.

• title (String): Title of the website. Matches the field "Title" in the website-masters editor. Can be
used in combination with the title of the current page to display the title of the HTML document,
e.g.: {{title}} | {{navigation.activePage.pageTitle}}.

• websiteBaseUrl (String) The (root) base URL of the website, without the Locale part. Example:
http://localhost:8085/inbound/default/e/l/my-website

Navigation (Object)

• activePage (Navigation Item object) The currently active page

• items (array of Navigation Item objects) A hierarchical list of navigation items. Loop through
these nested arrays, to render the navigation of the website.

Navigation Item (Object)

• id (UUID): Primary key according to table BSI_WEBSITE_REV_NAV#ID.

• contentId (UUID): Primary key according to table BSI_WEBSITE_REV_CONT#ID.

• url (String): The URL for a website page or website content type item.

• createDate (String): The create date of the website page or website content type item.

• updateDate (String): The update date of the website page or website content type item.

• canonicalUrl (String): The optional canonical URL for the website page or website content type
item.

• active (Boolean): True if the navigation element (page) is active, which means it should appear
highlighted in the navigation.

• folder (Boolean): True if BSI_WEBSITE_REV_NAV_LOCALE#NAV_ITEM_TYPE = "folder". Used to
distinct pages and folders in the navigation.

• level (Integer): Recursion-level of the navigation element, starting with 0 = Root.

• image (String): Locale independent absolute image URL. Can be used to render an icon for the
website page in the navigation.

71

http://localhost:8085/inbound/default/e/l/my-website/de-CH
http://localhost:8085/inbound/default/e/l/my-website

• localizedImage (String): Locale dependent absolute image URL. Can be used to render a
localized preview image for the website content type item.

• title (String): The title of the navigation item.

• pageTitle (String): The page title of the website page or website content type item.

• pageTitleShort (String): The short page title of the website page or website content type item.
Can be used to render an 'og:title' meta tag in the HTML.

• description (String): The description of the website page or website content type item. Can be
used to render a 'description' meta tag in the HTML.

• descriptionShort (String): The short description of the website page or website content type
item. Can be used to render an 'og:description' meta tag in the HTML.

• openGraphType (String): The Open Graph type of the website page or website content type
item. Can be used to render an 'og:type' meta tag in the HTML.

• tags (Array of strings): An array of strings with tags for the website page or website content
type item, as used in a tag cloud in a blog.

• noindex (Boolean): Whether the website page or website content type item should be indexed
by a search engine crawler. Can be used to render a 'robots/noindex' meta tag in the HTML.

• nofollow (Boolean): Whether the link to a website page should be followed by a search engine
crawler. Can be used to render a 'rel/nofollow' attribute in the HTML.

• localizedUrls (Object): Object with URL as value and locale as key. Can be used to render a
language-switch widget in the HTML.

• metadata: (Object) Locale independent JSON metadata of the website page or website content
type item.

• localizedMetadata: (Object) Locale dependent JSON metadata of the website page or website
content type item.

• items (array of Navigation Item objects) A hierarchical list of child navigation items.

• authorName (String): The author name of the website content type item. Only available for the
active page.

• authorImage (String): Absolute image URL. The author image of the website content type item.
Can be used to render an image of the author. Only available for the active page.

• localizedAuthorDescription (String): The localized author description of the website content
type item. Only available for the active page.

Pagination (Object)

• currentPageNo (Number): Current page number.

• numDataRecordsPerPage (Number): Number of records per page.

• firstDataRecordOffset (Number): Index of the first record on the current page.

• totalNumDataRecords (Number): Total number of existing records.

• firstPageUrl (String): URL of the first page.

• lastPageUrl (String): URL of the last page.

72

• lastPageNo (Number): Page number of the last page.

• previousPages (Array of Pagination Page objects): Provides information on pages previous to
the current page.

• nextpages (Array of Pagination Page objects): Provides information on the next pages following
the current page.

Pagination Page (Object)

• pageNo (Number): Page number.

• url (String): URL of the page.

• index (Number): Offset of the page number to the current page number.

Handlebars Variables Example (as JSON)

The following JSON snippet shows the possible content of a variables object at runtime.

{
 "title": "BSI Software",
 "language": "de",
 "locale": "de-CH",
 "page": {
 "id": "1006",
 "contentId": "2006",
 "url": "ueber-bsi.html",
 "title": "Über BSI",
 "pageTitle": "Erfahren Sie mehr zu BSI",
 "level": 0,
 "active": true,
 "localizedUrls": {
 "de-CH": "ueber-bsi.html",
 "en-CH": "about-bsi.html"
 }
 },
 "navigation": {
 "activePage": {
 "id": "1006",
 "...": "INFO: same object as in 'page'"
 },
 "items": [
 {
 "id": "1002",
 "contentId": "2002",
 "url": "loesungen.html",
 "title": "Lösungen",
 "pageTitle": "Lösungen für Ihre Kunden",
 "level": 0
 },
 {
 "id": "1003",

73

 "contentId": "2003",
 "url": "branchen.html",
 "title": "Branchen",
 "folder": true,
 "level": 0,
 "items": [
 {
 "id": "1004",
 "contentId": "2004",
 "url": "banking.html",
 "title": "Banking",
 "pageTitle": "Lösungen fürs Finanzwesen",
 "level": 1
 },
 {
 "id": "1005",
 "contentId": "2005",
 "url": "health.html",
 "title": "Health",
 "pageTitle": "Lösungen fürs Gesundheitswesen",
 "level": 1
 }
]
 },
 {
 "id": "1006",
 "...": "INFO: same object as in 'page'"
 }
]
 }
}

The following Handlebars (.hbs) code snippet shows how the variables provided in the example
above, are used in the template. The example shows a typical template for the website navigation.

{{#navigation}}
<nav class="navigation">
 {{#items}}
 <ul class="nav-item-container level-root">
 <li class="nav-item level-root">
 <!-- root level -->
 {{#active}}
 {{title}}
 {{/active}}
 {{^active}}
 {{title}}
 {{/active}}

 {{#items}}
 <ul class="nav-item-container level-1st">

74

 <!-- 1st level -->
 <li class="nav-item level-1st">
 {{#active}}
 {{title}}
 {{/active}}
 {{^active}}
 {{title}}
 {{/active}}

 {{/items}}

 {{/items}}
</nav>
{{/navigation}}

Working with Pre-Defined Includes

Pre-defined includes act like a regular content-element in the website editor, but they cannot be
edited by the user. Instead pre-defined includes are defined as a Handlebars template, which
means it is possible to use all the variables provided by the website. The Handlebars placeholders
are not resolved when the page is edited in the website editor, but only when the page is finally
rendered in the browser.

This allows to build content-elements which output data available as metadata on the page, for
instance the 'page title' or the 'description'. The advantage for the content user is, that he or she
must not copy/paste content already defined as metadata.

The following example shows how to make a pre-defined include 'page-info.hbs', which outputs the
'page title' and the description.

<div class="page-info" data-bsi-element="page-info" data-bsi-hide-edit-button="true">
 <p>Page title: {{page.pageTitle}}</p>
 <p>Description: {{page.description}}</p>
</div>

In the design.json you must define the pre-defined include and also define a content-element. You
can reference the same file in both places. Note, the example shows only the relevant part of the
design.json.

{
 "contentElementGroups": [{
 "groupId": "content",
 "contentElements": [
 {
 "elementId": "page-info",
 "file": "include/page-info.hbs",
 "label": "Page Info",

75

 "icon": "info",
 "hidden": true
 }
]
 }],
 "website": {
 "includes":{
 "page-info": {
 "includeType": "pre-defined",
 "file": "include/page-info.hbs",
 "name": "Page Info",
 "editable": false
 }
 }
 }
}

TIP
Do not forget to add the new content-element/include to the data-bsi-dropzone-
allowed-elements attribute in your dropzones.

3.5.4. Configuration files

This chapter describes the necessary configuration files.

3.5.4.1. Website-specific metadata inside design.json

The design.json file is a metadata file for structured configuration data.

Example for the design.json file for website designs:

{
 "schemaVersion": "1.0",
 "defaultLocale": "de",
 "locales": ["de", "en"],
 "nls": {
 "page": {
 "*": "Seite",
 "en": "Page"
 }
 },
 "website": {
 "maxNavigationLevel": 2,
 "pagination": {
 "numDataRecordsPerPage": 20,
 "numAdjacentPages": 3
 },
 "includes":{
 "__page__": {
 "name": "Vorlage für Inhaltsseiten",

76

 "reference": "__page__",
 "file": "include/page.hbs",
 "contextFile": "include/page-context.json"
 },
 "navigation":{
 "name":"Navigation",
 "reference":"navigation",
 "file":"include/navigation.hbs"
 },
 "header":{
 "name":"Kopfzeile",
 "reference":"header",
 "file":"include/header.html",
 "editable":true
 },
 "pagination-element": {
 "name": "Pagination",
 "contentType": "pre-defined",
 "file": "include/pagination-element.hbs",
 "editable": false
 },
 "footer":{
 "name":"Fusszeile",
 "reference":"footer",
 "file":"include/footer.html",
 "editable":true
 }
 }
 },
 "websiteContentTypes": ["blog", "press-release"]
}

• schemaVersion (String): Needs to be set to 1.0, might be relevant for changes in later versions.

• defaultLocale (String): Default language (must be contained in locales).

• locales (Array of String): List with languages (e.g.: en, de, de-CH).

• nls: Contains a map with NLS keys, which can be used within the .hbs files with bsi.nls.

• website: maxNavigationLevel defines the maximum depth of the navigation (level of the
hierarchy) that can be displayed by the design. To allow better structuring of pages and folders,
the website editor allows the creation of websites with greater depth, but such pages or folders
can’t be selected through the navigation on runtime. However, an internal link from one page to
another page with greater depth is still possible.

• website: pagination is used for pagination (see Pagination). The property numDataRecordsPerPage
can be used to specify how many records are to be displayed simultaneously on a page. The
property numAdjacentPages describes how many lower and higher page numbers are to be
displayed in the pagination navigation. For example, if numAdjacentPages is set to 3 and you are
on page 2, then the maximum number of pages displayed in the navigation is 1, 2, 3, 4 and 5.

• includes: See below.

77

• websiteContentTypes (Array of string): Defines which 'website content types' are allowed to be
used with this design. Possible values are: "blog", "event", "pop-up", "press-release". Your CX
project may contribute additional website content types.

3.5.5. Includes

All files that are inherited to the database on the creation of a website as navigation item or include
have to be referenced in the design.json file. All includes from the design.zip are inherited
automatically with content-type=built-in, unless content-type=pre-defined is set explicitly.

The file design.html matches the master and is automatically created inside the website internally
as an include with the reference master. For that reason this include should not be defined in the
design.json file, as it is defined already.

The minimal include is page, which works as a template for new pages within a website.

The key, which is used for the bsi:include-tags, is used as a unique reference to the include.

For each include, the following properties can be configured:

• name: Displayed name of the include.

• file: Points to a file inside the zip archive, relative to the root of the zip file. Only .html and .hbs
are allowed.

• contextFile: Editable includes can have a context for Handlebars content elements, the same as
the design.hbs can for e.g. Landingpages.

• contentType: built-in (default, if not set manually), pre-defined and user-defined.

• editable: True, when the include can be edited in the content editor by the user. Default is true.
Must be false for all includes that use Handlebars. You should avoid to change the value of this
property in design updates. If you must change the value, a 'direct update' of the content is
enforced in the design update. This means, that the existing HTML content of the current
website cannot be migrated and will be overridden with the content of the include in the new
version of the design. Instead of changing the editable property, you should consider to define a
new include with a new reference/ID.

3.5.5.1. Design.hbs

The design.hbs file is equivalent to the "master" of the website. On the creation of a website, an
include with reference master is created with the contents of the design.hbs file. This include can’t
be edited by the user. However, the design can reference other includes that may be edited, so that
e.g. the footer can be edited by the user.

A design can contain exactly one include for a page. That include uses the dynamic reference
{navigation.activePage.contentId}. For the editor this include has a special meaning: When
displayed in the editor, the full page (including the master) is displayed, but when saved, only the
content of the respective page is saved.

Advice: There should be no tags of the template-engine used for includes or pages that the user may
edit.

78

In the example below the value of the editable property from the include definition in the
design.json file is shown as an HTML comment, for better understanding.

<html>
<head>
 <title>{{title}} | {{page.pageTitle}}</title>
</head>
<body>

<header>
 <h1>Unicorn Inc.</h1>
 {{#navigation.index.active}}

 {{/navigation.index.active}}
 {{^navigation.index.active}}
 <img src="logo.png" width="100" height=
"100">
 {{/navigation.index.active}}
 <bsi:include id="navigation"><!-- editable: false -->
</header>

 <!--
 activePage is always set by the framework. When the root-URL '/' is loaded,
 'index' is used automatically.
 When the include-tag is resolved, it's replaced by the respective HTML-snippet.
 Having a single root-element (e.g.: <div>, <p>, ...), that encapsulates the entire
DOM of the include, is a technical requirement for any include.
 When changed, the attribute "data-ce-include-id" is set on this element with the
value of the original attribute "id".
 -->
 {{#response.ok}}
 <bsi:include reference="{navigation.activePage.contentId}"><!-- editable: true -->
 {{/response.ok}}
 <!--
 This include is only loaded when the response is != OK. It takes a special
function to set response.ok to false in the content-editor, to even make it editable
in the editor.
 -->
 {{^response.ok}}
 <bsi:include id="error"><!-- editable: false -->
 {{/response.ok}}

<footer>
 <!--
 The contents of the "design.hbs" cannot be edited directly, so the part that should
be editable by the user needs to be transferred to a separate include. -->
 <bsi:include id="footer-text"><!-- editable: true -->
</footer>

</body>

79

</html>

The include "footer-text" loads the built-in include footer-text.html. This file looks like this:

<div data-ce-content-element="footer-text"
 data-ce-element-part="formatted-text">
 This is a default-text for the footer. This text can be changed in the editor by the
user.
</div>

3.5.6. Content editor

Before the content is displayed in the editor, it has to be preprocessed by the WebsiteProcessor. It
resolves includes and starts the template-engine. Just like the live-website, the content editor also
creates an object with website variables.

Here is an example for content, when it’s loaded from the database:

<bsi:include reference="footer-text">
{{title}}

Here is an example for content, when it’s shown in the editor:

<div
 data-bsi-include-reference="footer-text"
 data-bsi-element="footer-text"
 data-bsi-element-part="formatted-text">
 Ipsem Lorum
</div>
BSI Website

3.5.7. Pagination

Pagination can be used to distribute data supplied by an external system (e.g. via REST) to several
pages on a website, so that only part of the data is displayed on one page. With Next and Back
buttons on the website page, it is then possible to display a separate set of data on each page.

The pagination must be defined via website: pagination in design.json and provided via an include.
The include must exist in the design.json file and have the special include type pre-defined (see
Website-specific metadata inside design.json). The include itself should have the extension .hbs and
use handlebars. The possible values for the Handlebars templates are documented in the chapter
on website variables (see Pagination (Object)). Besides, the attribute data-bsi-hide-edit-button
should be set, as includes that use handlebars should not be editable in the website editor. The
following is an example of a possible template:

80

<div class="pagination-element" data-bsi-element="pagination-element" data-bsi-hide-
edit-button="true">
 First Page
 {{#each pagination.previousPages}}
 [{{pageNo}}]
 {{/each}}
 {{pagination.currentPageNo}}
 {{#each pagination.nextPages}}
 [{{pageNo}}]
 {{/each}}
 Last Page
</div>

This template (include) is then rendered by the template engine at runtime. One possible output is
the following. Everything except page 20 are links pointing to the respective pages.

[First Page] [18] [19] 20 [21] [22] [Last Page]

The data to be rendered via pagination can finally be displayed with the table content element. For
this, a content element with the element part table should be extended by the attribute data-bsi-
show-pagination-field. The following is an example of a possible table template:

<div data-bsi-element="table" data-bsi-element-part="table" data-bsi-show-pagination-
field="">
 <table>
 <tr>
 <th>#</th>
 <th>Title 1</th>
 <th>Title 2</th>
 <th>Title 3</th>
 </tr>
 <tr>
 <td>1</td>
 <td>Text 1</td>
 <td>Text 2</td>
 <td>Text 3</td>
 </tr>
 <tr>
 <td>2</td>
 <td>Text 1</td>
 <td>Text 2</td>
 <td>Text 3</td>
 </tr>
 </table>
</div>

If the attribute data-bsi-show-pagination-field is set, the checkbox with Pagination will be
displayed in the configuration of the table content element. In order to use pagination, the

81

checkbox should be activated.

3.5.7.1. Limitations

There are some limitations to pagination:

• Pagination has only been implemented for tables (i.e. the element part table).

• The pagination can only be used directly in a website. We do not support the embedding of such
a table in an include. Other content (for example for landing pages) is also not supported.

• To enable a meaningful display of the handlebars code in the website editor, the Handlebars
templates are rendered when the editor is initially loaded. Afterwards, the rendering happens
only exceptionally. This can lead to the display being incorrect if page-dependent elements
(such as {{navigation.activePage}}) are used in the template.

3.5.8. Metadata / Images for the navigation

82

Each page and each folder of a website can have JSON metadata and an image to describe the
navigation. These two elements are special, because they can only be edited programmatically and
within a project-specific step. A possible use case is a REST webservice, which is embedded to the
design through javascript. The project-specific step can return the image and the metadata on a
GET request. This allows the rendered website to give images and information to the navigation.

These two attributes are invisible per default. However, they can be enabled through the CX setting
Website-Editor. Both attributes are the same for every language, so it’s not possible to deposit
different images for a German and an English website.

3.5.9. Security - Google reCAPTCHA

It’s highly advised to use the Google reCAPTCHA service "I’m not a robot", when using
username/password authentication with non-internal users (public). For that we use the optional
CX module com.bsiag.studio.media.googlerecaptcha, which can be configured in the CX settings.

Example for including the dependency in the CX app and the dev pom.xml:

 <!-- google reCAPTCHA service for website step -->
 <dependency>
 <groupId>com.bsiag.studio</groupId>
 <artifactId>com.bsiag.studio.media.googlerecaptcha</artifactId>
 </dependency>

A script can be included on the website’s design.html:

<script src="https://www.google.com/recaptcha/enterprise.js" async defer></script>

The captcha-field can be added to the login form of the content-elements.html as follows:

<form ... data-bsi-element="login-form">
...
<!-- Content Element: Google reCAPTCHGA Enterprise -->
<div data-bsi-element-part="form-field" class="form-field-container form-field">
 <label data-bsi-remove-if="live">{{bsi.nls "captcha"}}</label>
 <input data-bsi-remove-if="live" type="text" data-bsi-form-field-type="captcha"

83

value="Google reCAPTCHA" id="g-recaptcha-response" name="g-recaptcha-response">
 <div class="g-recaptcha" data-sitekey="the site key from the google api recaptcha
registration" data-action="login">
 </div>
</div>

The label text can be added to the design.json as follows:

 "captcha": {
 "*": "Captcha",
 "de": "Captcha"
 },

After that, the field ID of the captcha field (on the website, that uses the design, simply open the edit
dialogue and scroll down to the captcha field ID) has to be set to g-recaptcha-response. This value
has to match the settings of the Google reCAPTCHA in the administration view.

The last step is to generate a reCAPTCHA key on the Google Cloud of the customer/company and
register it in the settings under Administration - Customer Experience - Settings - Google reCAPTCHA
Settings.

For local testing, the URL of the BSI CX website can’t be localhost. For this purpose, the local
domain bsiag.local may be used. Simply go to the administration view - CX - Settings under base
URL for public links and register a second path, e.g. bsiw0160:

{
 "_type": "start.BaseUrlSetting",
 "default": false,
 "inboundBaseUrl": "http://bsiw0160.bsiag.local:8085/inbound/default",
 "qualifier": "default",
 "resourceBaseUrl": "http://bsiw0160.bsiag.local:8085/dev/resources"
}

Then select this URL on the smart field base path on the website step.

Here is an approximate guide for the creation of a reCAPTCHA site on the example of BSI
(customers have to adapt it to their company):

• Create project: BSI CX - Website Step → projectId=bsi-cx-website-step

• Add the service reCAPTCHA Enterprise API to the project

• Create login/access data for that api by creating a service account Service account for bsi cx
with role recaptcha enterprise agent → serviceAccountId=service-account-for-bsi-cx

• Add access key (json file) for that agent service account in IAM section of Google Cloud →
credentials json file

• Create reCAPTCHA site key here (this is just an example)

84

https://console.cloud.google.com/security/recaptcha/create?authuser=1&project=bsi-cx-website-step

• Add domains bsi-software.com and bsiag.local to site → recaptchaSiteKey=6Lcxp-…._lWrq

Documentation:

• Choosing the setup method for reCAPTCHA Enterprise

• reCAPTCHA Enterprise client libraries

• Marketplace reCAPTCHA Enterprise API

3.5.10. Creation of websites from existing landingpage templates

The following steps are necessary to create a website template from an existing landingpage
template:

1. For navigation inside the website, the navigation has to be created inside an include.

2. Includes for the header- and footer-area have to be defined inside the design.json file.
Furthermore, the Page-Include has to be defined. That area contains the proper content of the
website.

3. For landingpages images and other resources of the design can be referenced with relative
paths. Because the base URL of a website points to the location of the website and not to the
design, the handlebars template {{designBaseUrl}} needs to be put in front of every design
resource URL. For example, "img/my-image.jpg" has to be converted to
"{{designBaseUrl}}/img/my-image.jpg". The handlebars template is replaced with the design’s
correct URL by the CX server on runtime.

3.6. Teasers
Teasers are personalized data tailored by CX. An external system can request teaser data via EIP.
The response is a JSON object which contains personalized text, images and callback URLs to CX.
The external system renders the JSON data into HTML and uses existing tools and libraries in that
specific web frontend.

However, teasers can also be used internally in CX, for instance in landingpages, in e-mails and in
websites. For that CX provides a special content element, which is rendered server- or client-side.
Like the external system, CX requests teaser data from EIP when the content element is rendered.

Depending on the use case, CX design- and content authors can use either server- or client-side
rendering:

• E-mail: only server-side rendering is possible

• Landingpages: server- or client-side rendering

• Websites: server- or client-side rendering

3.6.1. Server-side Rendering

The CX design must provide a teaser content element, based on a Handlebars template.

Here is an example for a teaser content element (teaser.hbs):

85

https://cloud.google.com/recaptcha-enterprise/docs/getting-started?hl=en
https://cloud.google.com/recaptcha-enterprise/docs/libraries?hl=en#cloud-console
https://console.cloud.google.com/marketplace/product/google/recaptchaenterprise.googleapis.com?returnUrl=%2Fsecurity%2Frecaptcha%3Fproject%3Ddspa-course-2019-236311%26folder%3D%26organizationId%3D&authuser=1&project=bsi-customer-suite-website

{{#if numTeasers}}<div class="teaser-display" data-bsi-element="teaser-display"
 data-bsi-teaser-rendering="{{teaserRendering.value}}"
 data-bsi-teaser-target="{{teaserTarget.value}}">

 <div class="teaser-text">{{{teasers.[0].text}}}</div>
 <a href="{{teasers.[0].ctaUrl}}" class="button cc-jumbo-button w-inline-block
teaser-cta-url">
 <div class="teaser-cta-text">{{teasers.[0].ctaText}}</div>

</div>{{/if}}

Here is an example for the context file for the teaser content element (teaser-context.json):

{
 "teaserTarget": {
 "value": "Standard"
 },
 "teaserRendering": {
 "value": "server-side"
 },
 "numTeasers": 1,
 "teasers": [
 {
 "imageUrl": "{{designBaseUrl}}/img/placeholder.svg",
 "text": "Lorem ipsum dolor sit amet.",
 "ctaUrl": "#",
 "ctaText": "Dolore Magna"
 }
]
}

The following properties in the JSON are mandatory:

• numTeasers: a teaser request may return 0 to n teasers. Check this value to control, whether
the teaser should appear in the DOM. The CX framework sets this value to 0 if the current
participant is not a CRM customer, or EIP returned no teasers for the current participant.

• teasers: an array of teasers, ordered by priority. Note that the teaser data is not fixed and
depends on the content configuration. See the chapter about the JSON design to understand how
the teaser data is configured in CX. Usually you build a specific to teaser content element to
render a fixed set of teaser data properties. The property names form the contract between the
CX content configuration for the teaser, and the Handlebars code in the content element.

You must set these properties in the context JSON, in order to render a proper preview in the CX
content editor. All other properties in the context JSON are regular properties required for the
Handlebars feature. In this example the design defines two fields 'teaserTarget' and
'teaserRendering' for this content element.

The following data BSI attributes, can be used for teaser content elements:

86

• data-bsi-teaser-rendering controls whether the content element is rendered by the CX server. If
the value is set to server-side, fixed in the template or by the content editor, the CX framework
will load the Handlebars template for this content element, request the teaser data from EIP,
will render the Handlebars template into HTML and replace the content element in the DOM.

• data-bsi-teaser-target this value is set either fixed in the template or by the content editor.
Valid teaser targets are configured in the CX settings. In the content you can specify a target for
the teaser content element. This target is added to the request when CX requests a teaser from
EIP. Example value: Standard.

3.6.2. Client-side Rendering

If the value for the attribute data-bsi-teaser-rendering is set to client-side the HTML remains
untouched by the CX backend. However, the attribute data-bsi-teaser-endpoint will be added to the
DOM. The attribute value provides an absolute URL to make a REST call from the web frontend to
the EIP system.

If your CX design must support client-side rendering, you need to add some JavaScript code to your
design. A simple example implementation can look like this:

/**
 * Initializes the teasers in the document. This method is a blueprint for other
frontend implementations,
 * not only in BSI CX designs, but also in external CMS or websites. Here, the
endpoint URL is provided by
 * the BSI CX backend. The URL consists of these 3 parts:
 *
 * 1. The EIP host and path to the interface
 * 2. The teaser target (e.g. 'Standard')
 * 3. The teaser user ID (typically a UUID)
 *
 * Example: https://eip.bsi-software-com/web-api/get-teaser/Standard/1234567890
 */
function initTeasers() {
 let $elements = document.querySelector('[data-bsi-teaser-endpoint]');
 if (!$elements) {
 return; // Skip. There are no teasers to handle.
 }

 Array.of($elements).forEach($e => {
 let teaserEndpoint = $e.getAttribute('data-bsi-teaser-endpoint');
 if (!teaserEndpoint) {
 console.log('Teaser endpoint attribute is empty -> Skip teaser request, hide
teaser content element.');
 $e.classList.add("w-hidden");
 return;
 }
 console.log('Request teaser. Endpoint:', teaserEndpoint);
 fetch(teaserEndpoint)
 .then(response => {

87

 response.json().then(response => {
 console.log('REST response for teaser:', response);
 if (!Array.isArray(response)) {
 throw new Error('Expected an array as teaser response');
 }
 let numTeasers = response.length;
 if (!numTeasers) {
 throw new Error('Teaser response is empty');
 }
 console.log('Teaser response contains ' + numTeasers + ' teaser elements.
Using first element...');
 let teaser = response[0];
 $e.querySelector('.teaser-text').innerHTML = teaser.text;
 $e.querySelector('.teaser-image-url').setAttribute('src', teaser.
imageUrl);
 $e.querySelector('.teaser-cta-text').innerText = teaser.ctaText;
 $e.querySelector('.teaser-cta-url').setAttribute('href', teaser.ctaUrl);
 });
 })
 .catch(reason => {
 console.error('REST request for teaser failed', reason);
 });
 });
}

This function manipulates the DOM to apply the values from the teaser data request. See the code
snippet for the teaser.hbs above, to understand how the HTML looks like for this example. Also
note that some properties values can contain HTML, to avoid security issues, you should always
sanitize the HTML before adding it to the DOM.

When the CX backend detects, that it is not possible to request teaser data, for the current
participant in CX, the attribute data-bsi-teaser-endpoint will be empty. This can happen, if the
participant is not a CRM customer. In that case the design author should skip the REST request and
hide the teaser content element, or show a generic placeholder instead.

3.6.3. The JSON Design / Teaser Content Type

You have already learned that teasers are basically JSON data. This means a content author must
configure JSON data for a teaser, as he or she would do with HTML content. In order to do that, CX
defines the content type 'Teaser'.

CX comes with a special built-in design for this content type. Basically this design type works as a
regular HTML based design. CX uses the regular content editor to work with teaser content.
However, although we work with HTML content in the content editor, this content is later
transformed to JSON data by the CX framework.

In order to do that, the content elements in the JSON design must use the following data BSI
attributes:

• data-bsi-json-property Defines the JSON property name. By default, the value for the property

88

name is extracted from the body of the DOM element where this attribute is defined.

• data-bsi-json-value-attribute Optional attribute used in case, where the value is not stored in
the body of the DOM element, but must be extracted from an attribute. See Example 2 below.

<div class="content-element-wrap" data-bsi-element="plain-text">
 <div class="json-property">{{jsonProperty.value}}</div>
 <div class="paragraph-light" data-bsi-json-property="{{jsonProperty.value}}">{{
value.value}}</div>
</div>

Example 1: a simple plain text content element for the JSON editor. The content user can freely define
a property name in the content editor.

<div class="detail-image-container" data-bsi-element="image">
<div class="json-property">{{jsonProperty.value}}</div>
<img src="{{image.srcUrl}}" width="920" alt="" class="detail-image"
 data-bsi-json-property="{{jsonProperty.value}}" data-bsi-json-value-
attribute="src">
</div>

Example 2: an image element for the JSON editor. The content user can freely define a property name
in the content editor.

Note, the DIV with the class "json-property" is just eye candy to visualize the property name in the
content editor (see the image below).

As in a regular design, you can use existing element parts to build your JSON content elements, like
the image element part, for choosing images from the CX media library.

You can also build JSON content elements that emit multiple json properties, like a CTA button that
emits a ctaText and a ctaUrl.

With that you can provide a reasonable content preview to the content user, although he or she
configures just JSON data. This is how the JSON design looks like in the content editor:

89

3.6.3.1. Fixed JSON Designs

For rapid prototyping it is very convenient to have a flexible JSON design, which allows to define
arbitrary property names.

However, in a real-life project you want to fix property names, because they are the contract
between the CX content, the teaser data stored in EIP, the design which must render that data or
even an external third party system, which must render teaser data.

For that purpose the CX design developer can make a fixed JSON design. In that design all property
names are pre-defined, and they can not be changed by the content author. It is also not possible to
add additional content elements or remove existing content elements. All this is achieved by using
the existing CX design features, like hiding copy and remove buttons in the content editor or
limiting the number of content elements in a dropzone. In comparison to the examples above a
fixed plain text element can look like this:

90

<div class="content-element-wrap" data-bsi-element="plain-text">
 <div class="json-property">plainText</div>
 <div class="paragraph-light" data-bsi-json-property="plainText">{{value.value
}}</div>
</div>

Example 3: a plain text content element for the JSON editor. The property name is fixed (plainText) and
can not be changed by the content user.

91

4. CX Design Build

WARNING
As of BSI CX 22.0, the design build has been introduced and supersedes the
previous CX design creator. Please refer to version 16.3 of the CX design
documentation for more information about the CX design creator.

The design build was developed to facilitate the creation of templates. The NPM build compiles ZIP
files that are uploaded to BSI CX using a webpack build.

The CX design build has the following functionality and tasks:

• Parsing Twig templates for HTML

• Formatting the generated HTML "nicely" and validating it

• Parsing SCSS/SASS to CSS

• Minifying and autoprefixing CSS

• Merging and minifying JavaScript

• Creating the ZIP file for the upload to BSI CX

A detailed description of the application and the configuration options of the design build are
documented in the design build wiki at GitHub.

Please note: When creating designs with the CX design build, the generated artifacts (i.e., HTML,
CSS, and JavaScript files) should not be directly edited. Instead, any modifications should be made
in the source code itself.

Of course, you can also use a separate tool stack to develop a design. We do not recommend the
development of a design directly in HTML, CSS, and JavaScript. This may work with small
templates, but it quickly becomes confusing and error prone.

92

https://github.com/bsi-software/bsi-cx-design-build
https://bsi-software.github.io/bsi-cx-docs/
https://bsi-software.github.io/bsi-cx-docs/
https://github.com/bsi-software/bsi-cx-design-build
https://github.com/bsi-software/bsi-cx-design-build/wiki

5. Migrate an existing design to the new
build
This chapter provides a short migration guide to the conversion of an existing design for CX version
1.3 or lower to the new design build. For basic information on the new design build, please consider
the corresponding Wiki page on GitHub.

As a first step of the migration, it is required to set up the project structure. It’s recommended that
you start with the Scaffold Design instead of creating the structure all by yourself. Also consider
reading this chapter before you start with the migration.

5.1. Content Elements
Now you can start the migration by transforming the content elements. This step will be explained
on an example:

Listing 74. Content element from the old design creator build.

<div class="content-element image-wrapper" data-bsi-element="image">
 <div class="row">
 <div class="flex">
 <div class="element">
 <div class="image">
 <img data-bsi-element-part="image" src="{{ src ?: baseUrl|raw ~
"/img/placeholder.jpg" }}" alt="" />
 </div>
 <div class="image-legend" data-bsi-element-part="plain-text">{{ legend
?: "Lorem ipsum image description" }}</div>
 </div>
 </div>
 </div>
</div>

Listing 75. Corresponding entry in the design.properties file.

element.image.label=Image
element.image.description=with description
element.image.icon=image
element.image.parts.image.label=Image
element.image.parts.plain-text.label=Description

The content elements are usually organized in Twig files inside a content-elements folder. While the
corresponding properties are placed in a single design.properties file. In the new build process, it’s
recommended to keep it all together in a single folder and separated from any other content
element. So take a look on the existing content elements from the scaffold design. They are all
nicely organized in separate folders. So create a new folder for your own element:

93

https://github.com/bsi-software/bsi-cx-design-build
https://github.com/bsi-software/bsi-cx-design-build/wiki
https://github.com/bsi-software/bsi-cx-scaffold-design
https://github.com/bsi-software/bsi-cx-design-build/wiki/First-Steps

Listing 76. Folder structure of a single content element.

.
└───image
 index.js ①
 placeholder.jpg ②
 template.twig ③
 styles.less ④

① This file will contain the content element specification.

② Feel free to place any content element related assets here.

③ The Twig template for our content element.

④ Any content element related Stylesheets. This can also be a LESS or SASS file.

Create the index.js and template.twig files inside this folder and feel free to add any related assets
too. In our example, we add the placeholder.jpg here. Now we can create the template.twig:

Listing 77. The transformed template for the content element.

<div class="content-element image-wrapper" data-bsi-element="image">
 <div class="row">
 <div class="flex">
 <div class="element">
 <div class="image">
 <img data-bsi-element-part="image" src="{{ url ?: bsi_cx_asset
('./placeholder.jpg') }}" alt="" />
 </div>
 <div class="image-legend" data-bsi-element-part="plain-text">{{ legend
?: "Lorem ipsum image description" }}</div>
 </div>
 </div>
 </div>
</div>

Listing 78. The content element specification in the index.js file.

require('./styles.less'); ①

const {cx, Icon} = require('@bsi-cx/design-build'); ②

module.exports = cx.contentElement
 .withElementId('image')
 .withLabel('Image')
 .withDescription('with description')
 .withIcon(Icon.IMAGE)
 .withFile(require('./template.twig'))
 .withParts(
 cx.part.image
 .withLabel('Image'),

94

 cx.part.plainText
 .withLabel('Description'));

① Include any related stylesheets right at the beginning of your content element specification.

② Be sure you use require() instead of import.

NOTE
Be aware, that there are some advanced features available with the new design
build. For example referenced content element parts, which can be useful in
complex content elements.

Once you have finished creating your content element, you can include them in your design
specification. The design specification is contained in the design.js file and replaces the
design.properties. You find the design.js at the root folder of your template.

Listing 79. The design specification for the transformed design.

require('./styles/styles.scss'); ①

const {cx, Design} = require('@bsi-cx/design-build');

/**
 * @type {Design}
 */
module.exports = cx.design
 .withTitle('BSI - Landingpage') ②
 .withAuthor('BSI Business Systems Integration AG') ③
 .withDate('14.04.2022')
 .withContentElementGroups(
 cx.contentElementGroup
 .withGroupId('content')
 .withLabel('Content')
 .withContentElements(
 require('./content-elements/content/image'), ④
 require('./content-elements/content/text')));

① You can also include global stylesheets (CSS, LESS or SASS) here.

② Title of this template, corresponds to the template.name from the design.properties file.

③ The author of this template, corresponds to the template.author from the design.properties file.

④ This is our transformed content element. The path points to the folder. Since it contains an
index.js, it’s not required to mention the filename here.

5.2. Styles
If your content element uses any Styles, you must transform them to a Java Script styles definition:

Listing 80. The style definition in the old design.properties format.

style.element-width.label=Element width

95

https://github.com/bsi-software/bsi-cx-design-build/wiki/Design-Reference#content-element-part

style.element-width.class.element-with-unset.label=None
style.element-width.class.element-width-full.label=Full
style.element-width.class.element-width-left-right.label=Label left, field right

The transformation to the new format is pretty straightforward:

Listing 81. The style definition in the new Java Script format.

const {cx} = require('@bsi-cx/design-build');

module.exports = cx.style
 .withIdentifier('element-width')
 .withLabel('Element width')
 .withCssClasses(
 cx.cssClass
 .withLabel('None')
 .withCssClass('element-with-unset'),
 cx.cssClass
 .withLabel('Full')
 .withCssClass('element-width-full'),
 cx.cssClass
 .withLabel('Label left, field right')
 .withCssClass('element-width-left-right'));

It’s recommended to place the style definition in a separate Java Script file. If your style is
exclusively for one element, you can place the file right next to the element definition. Otherwise,
you should put it in the configs/styles folder inside your template root. To use a style in your
content element, simply reference the file:

Listing 82. Use a style definition in your content element.

const {cx, Icon} = require('@bsi-cx/design-build');

module.exports = cx.contentElement
 .withElementId('image')
 .withLabel('Image')
 .withDescription('with description')
 .withIcon(Icon.IMAGE)
 .withFile(require('./template.twig'))
 .withStyleConfigs(require('../../../configs/styles/fade-out')) ①
 .withParts(
 cx.part.image
 .withLabel('Image'),
 cx.part.plainText
 .withLabel('Description'));

① Just pass the style definition to the builder using withStyleConfigs() and require().

96

5.3. Design and Preview Templates
To bundle your design and preview templates, create a new preview.twig and design.twig file inside
the template root folder. To prevent code duplication, it’s recommended to create a _layout.twig
template and extend it in your design.twig and preview.twig. Take a look at the following example:

Listing 83. The contents of a simple _layout.twig template.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8"/>
 <title>{{ properties.title }}</title>
 <meta name="viewport" content="width=device-width, initial-scale=1"/>
 <link rel="stylesheet" href="{{ bsi_cx_css_href() }}"/> ①
</head>
<body class="d-flex flex-column min-vh-100">
{% apply spaceless %}
 <header id="header" data-bsi-dropzone="header">
 {% block header %}{% endblock %}
 </header>
 <main id="content" data-bsi-dropzone="content">
 {% block content %}{% endblock %}
 </main>
 <footer id="footer" data-bsi-dropzone="footer">
 {% block footer %}{% endblock %}
 </footer>
{% endapply %}
 <script src="{{ bsi_cx_js_module_runtime_href() }}" data-bsi-remove-if="draft"
defer="defer"></script> ②
 <script src="{{ bsi_cx_js_module_href('main') }}" data-bsi-remove-if="draft"
defer="defer"></script> ③
 {{ bsi_cx_js_module_missing_chunks_import() }} ④
</body>
</html>

① Use the bsi_cx_css_href() Twig helper to include your stylesheets. More options can be found
here.

② You can skip this line if you don’t have any Java Script modules configured.

③ Use the bsi_cx_js_module_href() Twig helper to include a Java Script module. You can skip this
line if you don’t have any Java Script modules configured.

④ This imports all missing chunks, related to Java Script modules. You can skip this line if you
don’t have any Java Script modules configured. More information on including Java Script in
your design can be found here.

Now you can extend the blocks from the _layout.twig in your design.twig and preview.twig. The
following example illustrates this step for the design.twig:

97

https://github.com/bsi-software/bsi-cx-design-build/wiki/Design-Reference#include-stylesheets
https://github.com/bsi-software/bsi-cx-design-build/wiki/Design-Reference#include-javascript

Listing 84. The design.twig extends the _layout.twig.

{% extends '_layout.twig' %}

{% block header %}
 {% include './content-elements/header/banner/template.twig' %}
{% endblock %}

{% block content %}
 {% include './content-elements/content/title-h1/template.twig' %}
 {% include './content-elements/content/text/template.twig' %}
{% endblock %}

{% block footer %}
 {% include './content-elements/footer/two-col/template.twig' %}
{% endblock %}

5.4. Java Script
You have two options to include your Java Script code:

1. Place them in the static folder inside your templates root and include them with
bsi_cx_asset().

2. Create a module in the modules folder and take full advantage of all modern Java Script.

5.5. Stylesheets
Your global can place your global stylesheets directly in the styles folder, located at your template
root. You can also place any content element specific styles here instead of moving them to the
specific content element’s own folder. To bundle your stylesheets, you must reference them in your
design.js:

Listing 85. Including a stylesheet in your design.

require('./styles/styles.scss');

5.6. Properties
The new design build uses Java Script files instead of YAML. The properties.js file is a CommonJS
module, that exports a simple Java Script object {}. Feel free to organize your properties as you
wish. To access the properties inside your stylesheets and templates, you can use the bsiProperty()
helper. Take a look at the following example:

Listing 86. Old YAML properties file.

styles:
 primary-color: '#ed4546'

98

 secondary-color: '#efefef'

Listing 87. New Java Script properties file.

const {css} = require('@bsi-cx/design-build');

module.exports = {
 styles: {
 'primary-color': css.color('#ed4546'),
 'secondary-color': css.color('#efefef')
 }
};

TIP
Use the css helper to get the most out your properties. More information on this
feature can be found here.

Listing 88. Access the properties inside your Twig templates.

{% set color = properties.styles['primary-color'] ?: '#ff00ff' %}

Listing 89. Use the bsiProperty() helper inside your templates.

@color: bsiProperty('styles.primary-color');

5.7. Build Configuration
In order to compile, it’s required to add your template to the build configuration in the
webpack.config.js file at the project root folder.

Listing 90. Content of the webpack.config.js build configuration file.

const path = require('path');

const {BuildConfig, ModuleConfig, WebpackConfigBuilder, Version, DesignType} =
require('@bsi-cx/design-build');

module.exports = WebpackConfigBuilder.fromConfigs(
 new BuildConfig()
 .withName('landingpage') ①
 .withVersion('1.0.1-alpha') ②
 .withTargetVersion(Version.CX_1_3) ③
 .withDesignType(DesignType.LANDINGPAGE) ④
 .withRootPath(path.resolve(__dirname, 'templates', 'landingpage')) ⑤
 .withPropertiesFilePath(path.resolve(__dirname, 'properties.js')) ⑥
 .withModules(
 new ModuleConfig() ⑦
 .withPath('main.js')

99

https://github.com/bsi-software/bsi-cx-design-build/wiki/Design-Reference#properties

 .withName('main')));

① The name of this template.

② The current version of this template, optional but recommended.

③ The target BSI CX version. The build is capable of converting a design to the required format of
various CX versions.

④ What type of design is your template?

⑤ The path to your template root folder. This is where your design.js is located.

⑥ The path to your properties.js file.

⑦ Configure your Java Script modules here.

100

6. Help

6.1. Good practices
The following things have been established as good practice in some projects. However, this
approach is by no means mandatory and may vary depending on the project and individual
preferences.

6.1.1. Deleting or deprecating content elements

As of CX 23.2, it is possible to archive content elements in a design without losing these elements in
an existing content after updating the design (see Archiving content elements). Instead of deleting
content elements, we strongly recommend archiving content elements.

6.1.2. Refactoring content elements

While refactoring a content element, keep in mind that your changes to a content element should
never break existing content. We strongly advice to test your refactored content element to content
that was created under the old design version to make sure that you do not introduce breaking
changes. Critical points are renamings, changing the order for element parts and big changes to the
DOM structure. In spite of that, we do encourage you to refactor where necessary, remind you to
test carefully. If a refactoring is not possible due to migration issues, adding a new content element
and deprecating the preexisting one (see: Deleting or deprecating content elements) is a feasible
option.

6.1.3. Creating accessible designs

To ensure accessibility in CX contents, several things should be taken into account when developing
a design. They help to ensure that screen readers can read out the content in the best possible way
and that people with impaired vision will not be disadvantaged.

6.1.3.1. Layout

• All functionalities (form input fields and control elements) should be accessible and operable
using the keyboard (tab key). It must also be possible to exit all elements using the keyboard so
that the user can navigate through all content.

• Every website has a correct language declaration. If the main language of the page is English, all
texts should be in English. If the intention is to insert text in another language, then this should
be marked up accordingly with the lang attribute in the correct language.

• Enlargement is possible in the browser, both with "Zoom" and by setting a user-defined font size

• To ensure that screen readers interpret and parse all page content correctly, HTML elements of
a website must be implemented in accordance with their W3C specifications. The W3C’s
Markup Validation Services can be used to check whether the source code of a website complies
with the W3C specifications.

101

https://validator.w3.org/
https://validator.w3.org/

6.1.3.2. Styling

• The contrast ratio of the font color to the background color is at least 4.5:1

• The contrast ratio of the font color of large font and the background color is at least 3:1

• If color differentiation alone is used, e.g. for links in a text, the links have a contrast ratio to the
surrounding continuous text of at least 3:1

• Each element must have a visible focus state that has a contrast ratio of 3:1 to the background
or non-focused state

• No spaces to create spacing, but CSS instead

6.1.3.3. Elements

• For information-bearing images, the alternative text must describe the visual information

• Headings are marked with the heading element (h1, h2, … , h6)

• The text size (font size) in web templates is defined in CSS in % or em

• Enumerations are formatted as lists (ul, ol, dl)

• Special text is formatted correctly, e.g. quotes as <blockquote> and <cite>

• Video content should have synchronous subtitles

• Data tables are formatted with the necessary markup, e.g. column, row and table headings are
labeled and headings and summaries are present

6.1.3.4. Forms

• Labels are present and meaningful. Labels and associated form input fields are logically linked
(implementation with for attribute for label elements). The label should be present prior to the
associated input field (exception: checkboxes, radio buttons).

• Form fields may have an additional information text to describe what input is expected. If, for
example, a certain format is expected, this should be described (e.g. "Date format:
DD.MM.YYYY"). This text should be placed in front of the input field.

• Mandatory fields should be marked (e.g. with *). The mandatory field star must not be
integrated via CSS, it should be placed directly in the label. The required attribute should be
added to the input element.

• A mandatory field explanation should be provided (e.g. "Please fill in all fields marked with *").
The information must appear before the first mandatory field.

• Error messages should appear directly below the relevant input field. They should have the
attributes aria-live="assertive" (or aria-live="polite") and role="alert" so that they are read aloud
by the screen reader as soon as they appear.

6.2. Troubleshooting
In this chapter, we are collecting some common issues design developers may face in their
development process.

102

6.2.1. Design Upload

While uploading a design, BSI CX will parse the content of the ZIP file to ensure that the containing
design is valid. If the parser detects inconsistencies, an error message is displayed. The following
trouble shooting sections will help to correct the error.

TIP
It is helpful to to view the details of the error message by clicking on Details, if
available.

WARNING
In Versions prior to CX 1.2.48, the error message may be cut off in the message
box. Use Ctrl  +  C and paste the error message to any text file to view the full
details.

6.2.1.1. Validation error: File is missing

Figure 17. error message: file is missing

Your upload is missing a mandatory file. Please refer to File format where the mandatory files for
your design type is described in detail.

6.2.1.2. Validation error: Invalid content element in 'data-bsi-dropzone-allowed-elements'

Figure 18. error message: invalid content element in 'data-bsi-dropzone-allowed-elements'

1. Error message

103

2. Affected ZIP file

3. Affected file (within the ZIP file)

4. Name of the data-bsi-dropzone in which the error causing content element is placed

5. The name of the content element. In this case, the content element name is missing

In one of your data-bsi-dropzone-allowed-elements='' definitions, there is an element listed which
does not exist in the content-elements.html file. Common cases where this happens:

• A content element has been deleted but it is still referred by a dropzone

• A content element has been renamed and a dropzone is still referring to it under its previous
name

• A new content element has just been implemented, but there is a mismatch in naming. Check
again the name of your data-bsi-element and make sure it matches the name in the dropzone.

Listing 91. example of a badly referenced element in a dropzone

<!-- Design_de-CH.zip/design.html -->
<div data-bsi-dropzone="content"
 data-bsi-dropzone-allowed-elements="basic-cta hello-world">
 <!-- hello-world should be hello-text, see below -->
</div>

<!-- Design_de-CH.zip/content-elements.html -->
<div data-bsi-group="basic">
 <!-- in design.html, the element is incorrectly referenced under the name hello-
world -->
 <div data-bsi-element="hello-text" data-bsi-element-part="formatted-text">
 <p>Lorem ipsum</p>
 </div>
 <a data-bsi-element="basic-cta" href="#" data-bsi-element-part="link"
class="element basic-cta">Lorem ipsum
</div>

6.2.1.3. Validation error: Unknown content element part

Figure 19. error message: unknown content element part

104

The specified data-bsi-element-part is not supported by CX. For a list of supported element parts,
visit the [Parts] documentation chapter.

NOTE
In the example above, a text element part is specified. According to the
documentation, it must either be plain-text or formatted-text. Thus, it is unknown to
CX.

6.2.1.4. Validation error: Dropzone contains sample content element that doesn’t match the
structure of the reference content element

Figure 20. error message: Dropzone contains sample content element that doesn’t match the structure of
the reference content element

A discrepancy was discovered when using a content element as sample content. The example must
have the same HTML structure as the specified content element.

TIP A comparison of the two elements can be displayed by clicking on Details.

Listing 92. example of a sample content that does not match the specified content element

<!-- Content Element: Specification of the element (content-elements.html) -->
<div class="hello-world" data-bsi-element="basic-hello-world">
 <h1 data-bsi-element-part="plain-text">Placeholder</h1>

</div>
<!-- Content: sample content (design.html or content-elements.html) -->
<div class="hello-world" data-bsi-element="basic-hello-world">
 <h1 data-bsi-element-part="plain-text">Hello World, how are you?</h1> ①
 <p>just another text</p> ③

105

 ②
</div>

① OK: deviating text within an editable area (here: plain-text element part)

② OK: deviating attribute, which can be edited from CX for this type anyway

③ NOT OK: adding, manipulating or removing DOM nodes is not allowed

6.2.1.5. Validation error: Dropzone contains sample content that are not content elements

Figure 21. error message: Dropzone contains sample content that are not content elements

A dropzone can contain 0…n content elements. Only content elements are allowed as direct child
nodes of dropzones. Therefore, HTML that is not part of a content element must not be placed in a
dropzone.

Listing 93. example of a detached paragraph that must not be placed in a dropzone

<div data-bsi-dropzone="content" data-bsi-dropzone-allowed-elements="title-h1 title-h2
title-h3 basic-text basic-image basic-cta">
 <h1 data-bsi-element="title-h1" data-bsi-element-part="plain-text" class="element
title-h1">Lorem ipsum</h1>
 <p>The paragraph surrounding me is not part of a content element and therefore
must not be placed in the dropzone 'content'.</p>
</div>

6.2.1.6. Validation error: Part uses tag X but requires one of the following: Y,Z

Figure 22. error message: Part uses tag div but requires one of the following: a,img

Make sure to user proper HTML tags for your element parts. Consult the content element [Parts]

106

documentation for the validation error causing element.

In the example above, this would be the Image content element [Parts] documentation.

Listing 94. example of a incorrect HTML tag for a certain element part and how to fix it.

<!-- Invalid: uses <div> which is not an image -->
<div data-bsi-element-part="image" src="img.png" alt=""></div>
<!-- Correct way: use an tag -->

6.2.1.7. Validation error: The X tag must contain exactly one Y tag

Make sure to user proper HTML tags for your element parts. Consult the content element [Parts]
documentation for the validation error causing element.

6.2.2. Design Update

To update existing content onto the most recent version of a design, the content must be explicitly
updated by clicking the Update Design button in the content editor. Success or failure of such a
design update is indicated by a message box.

After an update, we advise to visually cross-check the content to make sure that a change in the
design has not broken your content. In case if you are seeing content that does no longer render
properly, your recent design version has introduced a flaw. in that case, you can revert the design
update by clicking on the cancel button in the content editor.

Be reminded that once an updated content is saved, there is no way to go back to the older design
version, unless you explicitly create a new version by selecting the respective checkbox next to the
save button before saving the content.

6.2.2.1. Design Validation

After hitting the design update button or after a modification of your content, you may see a
validation error indicated in the top-right corner.

107

the red exclamation mark indicates a validation error on design update

In such a case, there is an issue in the design used by your content. The most typical error messages
related to design issues are described in the following chapter. You may also see some that are
already described in the Design Upload section.

6.2.2.2. Content does not match the structure of the referenced content element

The structure of one of your content elements that is being used right now in your content does no
longer match it’s specification.

TIP
It is helpful to to view the details of the error message by clicking on Details, if
available.

WARNING

viewing validation error details

In versions prior to CX 1.2.48, the error message may be cut off in the message
box.

TIP Use Ctrl  +  C and paste the error message to any text file to view the full details.

The details of such an error message always have the same structure:

Content Element:
<div>....</div>

Content:
<div>.....</div>

If the difference is difficult to find, we recommend using a diff tool to compare the concrete content
with the content element specification.

The root cause of a difference between a concrete content and the content element specification

108

may be one of the following:

JavaScript

You have a JavaScript running that is manipulating your content element. To prevent your content
from being modified through a script, make sure that you update your <script> tags in your
design.html file so that the scripts will only be loaded if your content is not being edited right now
in the content editor. Removing a script tag from the DOM if the content is being edited can be
achieved by adding data-bsi-remove-if='draft'.

Listing 95. removing a sript in draft (edit) mode

<script data-bsi-remove-if="draft" src="your-javascript that manipulates-the-DOM.js"
></script>

Duplicate attributes

If you compare the specification of the content element to the actual content and the difference is
somehow related to a CSS value that is being replaced by the term placeholder, then you might
have defined the error causing HTML attribute twice.

Listing 96. invalid HTML will lead to issues

<!-- Invalid HTML: the attribute 'style' is defined twice -->
<img style="text-decoration: none;" src="img/example.png" style="width:100%; max-
width: 100%;"/>

<!-- By merging the 'style' attribute, we can fix the issue above -->
<img src="img/example.png" style="text-decoration: none; width:100%; max-width:
100%;"/>

Usage of invalid HTML

Some browsers detect and try to fix invalid HTML. Therefore, the DOM structure of the HTML is
modified by the browsers, whereas CX still expects the specified structure.

Listing 97. invalid HTML will lead to issues

<!-- Invalid HTML, as defined in content-elements.html -->
<table data-bsi-dropzone="table">
 <div data-bsi-element="text">...</div>
</table>

<!-- As soon as the HTML is dropped in CX, the browser will 'fix' the HTML, leading to
a different HTML for the concrete content -->
<table data-bsi-dropzone="table"></table>

109

<div data-bsi-element="text">...</div>

Inline SVG (older CX versions)

WARNING This section applies to installations prior to CX 1.2.48.

Inline SVG is not supported in older CX versions. As a workaround, you may save the SVG to a file
instead and include it with an tag. If it is a requirement to render the SVG inline, some
projects have successfully used the Open-Source library svg-inject as a fallback.

6.2.3. Dropzone Issues

If you face issues related to dropzones (a dropzone does not allow to drop your element, the
element is dropped in a different place, …), you may find a solution in this section.

6.2.3.1. Element is not dropable or being dropped in another place

WARNING This section applies to installations prior to CX 1.2.46.

Figure 23. element is being dropped outside of the dropzone (or nowhere)

This may happen if a dropzone name is duplicated. Dropzones must have unique identifiers in
older versions of BSI CX. Make sure that a unique name is specified for each usage of data-bsi-
dropzone.

Listing 98. data-bsi-dropzone uniqueness violated

<!-- design.html -->
<div class="main-dropzone" data-bsi-dropzone="content" ①
 data-bsi-dropzone-allowed-elements=".....">
 <!-- ... -->
</div>

<!-- content-elements.html -->
<div class="image-area" data-bsi-dropzone="content" ②
 data-bsi-dropzone-allowed-elements="download-item"></div>

① A dropzone named 'content' is being defined properly

② Violation: another dropzone with the same name is defined again. Solution: change data-bsi-
dropzone to another value, e.g. data-bsi-dropzone="image-area-content"

110

https://github.com/iconfu/svg-inject

6.2.4. Design Creator Issues

6.2.4.1. Why is the Design Creator End of Life?

We’ve built a next generation Design Build that is Open-Source and based on widely used tech
stack. You may find more information on GitHub.

6.2.4.2. Is there any detailed documentation for the CX Design Creator

Unfortunately there is no detailed documentation. We do no longer invest into the CX Design
Creator as our sucessor, the CX Design Build, is ready to use.

6.2.4.3. HTML Comments / MSO Tags missing after running the CX Design Creator

If you are using the CX Design Creator and your HTML in the design.zip is missing all HTML
comments and therefore all outlook specific code is missing, change the tidy property to false in
the compiler.yml:

defaults:
 twig:
 comments: true
 tidy: false

6.2.5. Content Editor Limitations

6.2.5.1. Using CSS viewport units

If you want to use CSS viewport units, e.g. viewport-height vh, please note the following:

The content displayed in the content editor is embedded in an iframe. When elements defined by a
CSS viewport unit are placed inside an iframe, the size of the iframe is used as a reference, not the
size of the screen as desired.

Therefore, the CSS classes bsi-ce-edit-mode and bsi-ce-preview-mode (see Content editor specific
CSS) should be used to define a fixed height/width as alternative to the viewport height/width for
proper display in the content editor and preview mode. It is also important to note that this fixed
height/width should be set as minimum size of the element with the CSS viewport unit. Otherwise
CX will calculate the size of the content editor incorrectly.

See the following example:

Listing 99. CSS of an element using viewport unit

.header-image {
 height: calc(100vh - 32px);
 min-height: 800px !important;
}
.bsi-ce-edit-mode .header-image,
.bsi-ce-preview-mode .header-image {

111

https://github.com/bsi-software/bsi-cx-design-build
https://github.com/bsi-software/bsi-cx-design-build

 height: 800px !important;
}

112

	Design Documentation: BSI CX 25.2
	Covered Topics
	1. Introduction
	1.1. Getting started
	1.2. Technical Introduction
	1.3. Branding & Visual Design
	1.4. Constraints
	1.5. Designs since BSI CX 22.0
	1.6. File format
	1.7. Content Editor
	1.8. Content Security Policy (CSP)
	1.8.1. HTTP headers for public links
	1.8.2. HTTP headers for the index page of the BSI Customer Suite

	1.9. Structure Reference
	1.10. Dropzones
	1.11. Groups
	1.12. Additions to Designs in BSI CX 25.1
	1.12.1. Including Handlebars Content Elements in design.hbs

	2. design.json
	2.1. The Basics
	2.2. Content Element Groups
	2.3. Content Elements
	2.3.1. Handlebars Content Elements

	2.4. Archiving content elements
	2.5. Styles
	2.6. Configuration capabilities of the Rich Text Editor
	2.6.1. Feature list
	2.6.2. Value Lists

	3. Content Editor
	3.1. Content editor specific CSS
	3.2. Predefined Story outlets (Bracket Links)
	3.2.1. Bracket links in iterators
	3.2.2. Styling of bracket links
	3.2.3. Using anchor links inside a design

	3.3. Content Elements and Parts
	3.3.1. Grouping
	3.3.2. Types
	3.3.3. Element Parts
	3.3.4. Template Parts

	3.4. Data BSI Attributes
	3.4.1. Control Attributes
	3.4.2. Form Processor Attributes

	3.5. Websites
	3.5.1. Terms
	3.5.2. Concepts
	3.5.3. Handlebars, Templates
	3.5.4. Configuration files
	3.5.5. Includes
	3.5.6. Content editor
	3.5.7. Pagination
	3.5.8. Metadata / Images for the navigation
	3.5.9. Security - Google reCAPTCHA
	3.5.10. Creation of websites from existing landingpage templates

	3.6. Teasers
	3.6.1. Server-side Rendering
	3.6.2. Client-side Rendering
	3.6.3. The JSON Design / Teaser Content Type

	4. CX Design Build
	5. Migrate an existing design to the new build
	5.1. Content Elements
	5.2. Styles
	5.3. Design and Preview Templates
	5.4. Java Script
	5.5. Stylesheets
	5.6. Properties
	5.7. Build Configuration

	6. Help
	6.1. Good practices
	6.1.1. Deleting or deprecating content elements
	6.1.2. Refactoring content elements
	6.1.3. Creating accessible designs

	6.2. Troubleshooting
	6.2.1. Design Upload
	6.2.2. Design Update
	6.2.3. Dropzone Issues
	6.2.4. Design Creator Issues
	6.2.5. Content Editor Limitations

